942 research outputs found

    Proximity Constraints and Representable Trees

    Get PDF

    Influence of large offshore wind farms on North German climate

    Get PDF
    Wind farms impact the local meteorology by taking up kinetic energy from the wind field and by creating a large wake. The wake influences mean flow, turbulent fluxes and vertical mixing. In the present study, the influences of large offshore wind farms on the local summer climate are investigated by employing the mesoscale numerical model METRAS with and without wind farm scenarios. For this purpose, a parametrisation for wind turbines is implemented in METRAS. Simulations are done for a domain covering the northern part of Germany with focus on the urban summer climate of Hamburg. A statistical-dynamical downscaling is applied using a skill score to determine the required number of days to simulate the climate and the influence of large wind farms situated in the German Bight, about 100 km away from Hamburg.Depending on the weather situation, the impact of large offshore wind farms varies from nearly no influence up to cloud cover changes over land. The decrease in the wind speed is most pronounced in the local areas in and around the wind farms. Inside the wind farms, the sensible heat flux is reduced. This results in cooling of the climate summer mean for a large area in the northern part of Germany. Due to smaller momentum fluxes the latent heat flux is also reduced. Therefore, the specific humidity is lower but because of the cooling, the relative humidity has no clear signal. The changes in temperature and relative humidity are more wide spread than the decrease of wind speed. Hamburg is located in the margins of the influenced region. Even if the influences are small, the urban effects of Hamburg become more relevant than in the present and the off-shore wind farms slightly intensify the summer urban heat island

    Book Reviews

    Get PDF

    Indikation und Ergebnisse der simultanen Nieren- und Pankreastransplantation

    Get PDF

    Timescale Dependence in River Channel Migration Measurements

    Get PDF
    Accurately measuring river meander migration over time is critical for sediment budgets and understanding how rivers respond to changes in hydrology or sediment supply. However, estimates of meander migration rates or streambank contributions to sediment budgets using repeat aerial imagery, maps, or topographic data will be underestimated without proper accounting for channel reversal. Furthermore, comparing channel planform adjustment measured over dissimilar timescales are biased because short‐ and long‐term measurements are disproportionately affected by temporary rate variability, long‐term hiatuses, and channel reversals. We evaluate the role of timescale dependence for the Root River, a single threaded meandering sand‐ and gravel‐bedded river in southeastern Minnesota, USA, with 76 years of aerial photographs spanning an era of landscape changes that have drastically altered flows. Empirical data and results from a statistical river migration model both confirm a temporal measurement‐scale dependence, illustrated by systematic underestimations (2–15% at 50 years) and convergence of migration rates measured over sufficiently long timescales (\u3e 40 years). Frequency of channel reversals exerts primary control on measurement bias for longer time intervals by erasing the record of observable migration. We conclude that using long‐term measurements of channel migration for sediment remobilization projections, streambank contributions to sediment budgets, sediment flux estimates, and perceptions of fluvial change will necessarily underestimate such calculations. © 2019 John Wiley & Sons, Ltd

    Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO<sub>2</sub>

    Get PDF
    International audienceThe aim of this study was to identify the microbial communities that are actively involved in the assimilation of rhizosphere-C and are most sensitive in their activity to elevated atmospheric CO2 in a temperate semi-natural low-input grassland ecosystem. For this, we analyzed 13C signatures in microbial biomarker phospholipid fatty acids (PLFA) from an in-situ 13CO2 pulse-labeling experiment in the Giessen Free Air Carbon dioxide Enrichment grasslands (GiFACE, Germany) exposed to ambient and elevated (i.e. 50% above ambient) CO2 concentrations. Short-term 13C PLFA measurements at 3 h and 10 h after the pulse-labeling revealed very little to no 13C enrichment after 3 h in biomarker PLFAs and a much greater incorporation of new plant-C into fungal compared to bacterial PLFAs after 10 h. After a period of 11 months following the pulse-labeling experiment, the 13C enrichment of fungal PLFAs was still largely present but had decreased, while bacterial PLFAs were much more enriched in 13C compared to a few hours after the pulse-labeling. These results imply that new rhizodeposit-C is rapidly processed by fungal communities and only much later by the bacterial communities, which we attributed to either a fungal-mediated translocation of rhizosphere-C from the fungal to bacterial biomass or a preferential bacterial use of dead root or fungal necromass materials as C source over the direct utilization of fresh root-exudate C in these N-limited grassland ecosystems. Elevated CO2 caused an increase in the proportional 13C enrichment (relative to the universal biomarker 16:0) of the arbuscular mycorrhizal fungal biomarker PLFA 16:1?5 and one gram-positive bacterial biomarker PLFA i16:0, but a decrease in the proportional 13C enrichment of 18:1?9c, a commonly used though questionable fungal biomarker PLFA. This suggests enhanced fungal rhizodeposit-C assimilation only by arbuscular mycorrhizal fungal species under elevated CO2

    Planar Octilinear Drawings with One Bend Per Edge

    Get PDF
    In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (45∘45^\circ) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A kk-planar graph is a planar graph in which each vertex has degree less or equal to kk. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n2)×O(n)O(n^2) \times O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge

    Evaluation of the Effectiveness of Insecticide Treated Materials for Household Level Dengue Vector Control

    Get PDF
    An estimated 40% of the world's population lives at risk of contracting dengue, and it inflicts a significant health, economic and social burden on the populations of endemic areas. In the absence of a vaccine, vector control is the only available strategy to prevent transmission. Some control methods against Aedes aegypti (the main dengue vector) have been successful in reducing vector infestation levels, but rarely sustained the reductions for a prolonged period. We report here on the first effectiveness trial of insecticide treated curtains and jar covers against A. aegypti implemented under ‘real-life’ conditions. The coverage of tools was high at distribution, but declined quickly over the 18 months of follow up. The vector infestation levels showed a sustained 55% decrease in the intervention clusters, while no discernable pattern was observed at the municipal level. At least 50% curtain coverage was needed to reduce A. aegypti infestation levels by 50%. We concluded that deployment of insecticide treated window curtains in households can result in significant reductions in dengue vector levels, which are related to dengue transmission risk. The magnitude of the effect depends on the curtain coverage attained, which itself can decline rapidly over time
    • 

    corecore