21 research outputs found

    Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin

    Oxidation of sterols: energetics of C–H and O–H bond cleavage

    Get PDF
    Phytosterols, as components of human diet, received much attention because of their cholesterol-lowering and antioxidant properties. We have theoretically studied sterols oxidation in terms of O–H and C–H bond dissociation enthalpies (BDE). In 17 Δ⁔- and Δ⁷-sterols, BDEs were obtained for reported sites of oxidation attack. Obtained results indicate that Δ⁷-sterols are more susceptible to oxidation attack in comparison to Δ⁔-sterols. In sterol nuclei, the lowest BDE was found for C7–H bond in Δ⁔-sterols and for C14–H in Δ⁷-sterols. When Δ⁔-sterol has a C=C double bond in the side chain, the lowest BDEs are usually found for C–H bonds in α-positions to this bond. The homolytic cleavage of hydroxyl O–H bond requires larger energy in comparison to the studied C–H bonds. We have shown that the C–H bonds with lowest BDE values actually correspond to the dominant sites of oxidation attack

    Growth of ice nanoparticles via uptake of individual molecules: pickup cross sections

    Get PDF
    We present cross sections for pickup of several atmospherically relevant molecules on ice nanoparticles with the 0.5-3 nm diameter range. The experimental values are supported by molecular dynamics simulations and analytical calculations based on long-range cluster-molecule potentials. The cross sections are all considerably larger than the geometrical cross section of nanoparticle and vary significantly for different guest molecules

    Sodium doping and reactivity in pure and mixed ice nanoparticles

    No full text
    Doping of clusters by sodium atoms and subsequent photoionization (NaPI) is used as a fragmentation-free cluster ionization method. Here we investigate different clusters using NaPI and electron ionization (EI) with a reflectron time-of-flight mass spectrometer (RTOF). The mass spectra of the same clusters ionized by NaPI and EI reveal significant differences which point to Na reactivity in the clusters. First, we discuss mixed XM·(H2O)N (X = HNO3, N2O) clusters where reactions between Na and molecules X leads to the “cluster invisibility” for the NaPI method. Second, mixed (NH3)M·(H2O)N clusters are observed by both methods, but they reveal different cluster compositions, and the mass spectra suggest that neither the EI nor the NaPI spectrum corresponds exactly to the neutral cluster distribution. Finally, we discuss the reactions of Na in pure water clusters as a function of the number of Na atoms doped into the clusters. In summary, we present experimental evidence that the NaPI method in the present cases does not reveal the size and composition of the neutral clusters. A detailed understanding of Na reactivity in the clusters is needed for its application as a fragmentation-free cluster ionization method. Besides, we introduce the combination of NaPI and EI as a new tool to investigate the sodium reactivity in clusters and aerosol particles

    Effect of cluster environment on the electron attachment to 2-nitrophenol

    No full text
    Effect of cluster environment on the electron attachment to 2-nitrophenol (2NP) is studied in homogeneous 2NP clusters and heterogeneous clusters of 2NP, argon and water. The cluster environment significantly reduces fragmentation of 2NP after electron attachment. Parent cluster anions 2NPn- are primary reaction products in both, homogeneous and heterogeneous clusters. Non-dissociative electron attachment to homogeneous clusters proceeds at low energies <2 eV, presumably via dipole-supported states. In heterogeneous clusters, the interaction with low energy (<2 eV) electrons is shielded by the solvent. Surprisingly, the energetic threshold for the electron attachment rises with the number (n) of 2NP molecules in the cluster (2NP)n-. This rise can be either due to a strong change of the 2NP conformation induced by the cluster environment or due to the the competition with electron autodetachment after proton transfer that has been first observed by Allan in the formic acid dimer [M. Allan, Phys. Rev. Lett. 98, 123201 (2007)]. We observe the same threshold rise for complex Arm·(2NP)n- and H2O·(2NP)n- anions. This indicates that the electron attachment to 2-nitrophenol in cluster environment is more influenced by the solute − solute interaction compared to the solute − solvent interaction

    Suppression of low-energy dissociative electron attachment in Fe(CO)5 upon clustering

    No full text
    In this work, we probe anion production upon electron interaction with Fe(CO)5 clusters using two complementary cluster-beam setups. We have identified two mechanisms that lead to synthesis of complex anions with mixed Fe/CO composition. These two mechanisms are operative in distinct electron energy ranges. It is shown that the elementary decomposition mechanism that has received perhaps the most attention in recent years (i.e., dissociative electron attachment at energies close to 0 eV) becomes suppressed upon increasing aggregation of iron pentacarbonyl. We attribute this suppression to the electrostatic shielding of a long-range interaction that strongly enhances the dissociative electron attachment in isolated Fe(CO)5

    Infrared spectroscopy of O- and OH- in water clusters: evidence for fast interconversion between O- and OHOH-

    No full text
    We present infrared multiple photon dissociation (IRMPD) spectra of (H2O)nO- and (H2O)nOH- cluster ensembles for [n with combining macron] 8 and 47 in the range of 2400-4000 cm-1. Both hydrated ions exhibit the same spectral features, in good agreement with theoretical calculations. Decomposition of the calculated spectra shows that bands originating from H2OO- and H2OOH- interactions span almost the whole spectral region of interest. Experimentally, evaporation of OH is observed to a small extent, which requires interconversion of (H2O)nO- into (H2O)n-1OHOH-, with subsequent H2O evaporation preferred over OH evaporation. The modeling shows that (H2O)nO- and (H2O)n-1OHOH- cannot be distinguished by IRMPD spectroscopy.(VLID)4795238Version of recor

    Biomolecule Analogues 2‑Hydroxypyridine and 2‑Pyridone Base Pairing on Ice Nanoparticles

    No full text
    Ice nanoparticles (H<sub>2</sub>O)<sub><i>N</i></sub>, <i>N</i> ≈ 450 generated in a molecular beam experiment pick up individual gas phase molecules of 2-hydroxypyridine and 2-pyridone (HP) evaporated in a pickup cell at temperatures between 298 and 343 K. The mass spectra of the doped nanoparticles show evidence for generation of clusters of adsorbed molecules (HP)<sub><i>n</i></sub> up to <i>n</i> = 8. The clusters are ionized either by 70 eV electrons or by two photons at 315 nm (3.94 eV). The two ionization methods yield different spectra, and their comparison provides an insight into the neutral cluster composition, ionization and intracluster ion–molecule reactions, and cluster fragmentation. Quite a few molecules were reported <i>not to coagulate</i> on ice nanoparticles previously. The (HP)<sub><i>n</i></sub> cluster generation on ice nanoparticles represents the first evidence for coagulating of molecules and cluster formation on free ice nanoparticles. For comparison, we investigate the coagulation of HP molecules picked up on large clusters Ar<sub><i>N</i></sub>, <i>N</i> ≈ 205, and also (HP)<sub><i>n</i></sub> clusters generated in supersonic expansions with Ar buffer gas. This comparison points to a propensity for the (HP)<sub>2</sub> dimer generation on ice nanoparticles. This shows the feasibility of base pairing for model of biological molecules on free ice nanoparticles. This result is important for hypotheses of the biomolecule synthesis on ice grains in the space. We support our findings by theoretical calculations that show, among others, the HP dimer structures on water clusters
    corecore