25 research outputs found

    Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset

    Get PDF
    A search for neutrinoless double-β decay (0νββ) in Xe136 is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νββ and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of Xe136 0νββ has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νββ half-life sensitivity for this analysis is 5.0×1025 yr with a total Xe136 exposure of 234.1 kg yr. No statistically significant evidence for 0νββ is observed, leading to a lower limit on the 0νββ half-life of 3.5×1025 yr at the 90% confidence level

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    Full text link
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is \leq1\% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design

    Report from the Workshop on Xenon Detector 0νββ0\nu\beta\beta Searches: Steps Towards the Kilotonne Scale

    No full text
    International audienceThese proceedings summarize the program and discussions of the ``Workshop on Xenon Detector 0νββ0\nu\beta\beta Searches: Steps Towards the Kilotonne Scale'' held on October 25-27 2023 at SLAC National Accelerator Laboratory. This workshop brought together experts from the communities of neutrinoless double-beta decay and dark matter detection, to discuss paths forward for the realization of monolithic experiments with xenon approaching the kilotonne scale

    Report from the Workshop on Xenon Detector 0νββ0\nu\beta\beta Searches: Steps Towards the Kilotonne Scale

    No full text
    International audienceThese proceedings summarize the program and discussions of the ``Workshop on Xenon Detector 0νββ0\nu\beta\beta Searches: Steps Towards the Kilotonne Scale'' held on October 25-27 2023 at SLAC National Accelerator Laboratory. This workshop brought together experts from the communities of neutrinoless double-beta decay and dark matter detection, to discuss paths forward for the realization of monolithic experiments with xenon approaching the kilotonne scale

    Measurement of the scintillation and ionization response of liquid xenon at MeV energies in the EXO-200 experiment

    No full text
    Liquid xenon (LXe) is employed in a number of current and future detectors for rare event searches. We use the EXO-200 experimental data to measure the absolute scintillation and ionization yields generated by γ interactions from Th228 (2615 keV), Ra226 (1764 keV), and Co60 (1332 keV and 1173 keV) calibration sources, over a range of electric fields. The W value that defines the recombination-independent energy scale is measured to be 11.5±0.5 (syst.) ±0.1 (stat.) eV. These data are also used to measure the recombination fluctuations in the number of electrons and photons produced by the calibration sources at the MeV scale, which deviate from extrapolations of lower-energy data. Additionally, a semiempirical model for the energy resolution of the detector is developed, which is used to constrain the recombination efficiency, i.e., the fraction of recombined electrons that result in the emission of a detectable photon. Detailed measurements of the absolute charge and light yields for MeV-scale electron recoils are important for predicting the performance of future neutrinoless double β-decay detectors

    Development of a 127^{127}Xe calibration source for nEXO

    No full text
    International audienceWe study a possible calibration technique for the nEXO experiment using a 127^{127}Xe electron capture source. nEXO is a next-generation search for neutrinoless double beta decay (0νββ) that will use a 5-tonne, monolithic liquid xenon time projection chamber (TPC). The xenon, used both as source and detection medium, will be enriched to 90% in 136^{136}Xe. To optimize the event reconstruction and energy resolution, calibrations are needed to map the position- and time-dependent detector response. The 36.3 day half-life of 127^{127}Xe and its small Q-value compared to that of 136^{136}Xe 0νββ would allow a small activity to be maintained continuously in the detector during normal operations without introducing additional backgrounds, thereby enabling in-situ calibration and monitoring of the detector response. In this work we describe a process for producing the source and preliminary experimental tests. We then use simulations to project the precision with which such a source could calibrate spatial corrections to the light and charge response of the nEXO TPC

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    No full text
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is \leq1% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design

    Search for Majoron-emitting modes of Xe 136 double beta decay with the complete EXO-200 dataset

    No full text
    © 2021 authors. Published by the American Physical Society.A search for Majoron-emitting modes of the neutrinoless double beta decay of Xe136 is performed with the full EXO-200 dataset. This dataset consists of a total Xe136 exposure of 234.1 kg·yr, and includes data with detector upgrades that have improved the energy threshold relative to previous searches. A lower limit of T1/2Xe136>4.3×1024 yr at 90% C.L. on the half-life of the spectral index n=1 Majoron decay was obtained, a factor of 3.6 more stringent than the previous limit from EXO-200 and a factor of 1.6 more stringent than the previous best limit from KamLAND-Zen. This limit corresponds to a constraint on the Majoron-neutrino coupling constant of |geeM|<(0.4-0.9)×10-5. The lower threshold and the additional data taken resulted in a factor 8.4 improvement for the n=7 mode compared to the previous EXO-200 search. This search provides the most stringent limits to date on the Majoron-emitting decays of Xe136 with spectral indices n=1, 2, 3, and 7.11Nsciescopu

    Reflectivity and PDE of VUV4 Hamamatsu SiPMs in liquid xenon

    No full text
    Understanding reflective properties of materials and photodetection efficiency (PDE) of photodetectors is important for optimizing energy resolution and sensitivity of the next generation neutrinoless double beta decay, direct detection dark matter, and neutrino oscillation experiments that will use noble liquid gases, such as nEXO, DARWIN, DarkSide-20k, and DUNE . Little information is currently available about reflectivity and PDE in liquid noble gases, because such measurements are difficult to conduct in a cryogenic environment and at short enough wavelengths. Here we report a measurement of specular reflectivity and relative PDE of Hamamatsu VUV4 silicon photomultipliers (SiPMs) with 50 μm micro-cells conducted with xenon scintillation light (∼175 nm) in liquid xenon. The specular reflectivity at 15&circ; incidence of three samples of VUV4 SiPMs is found to be 30.4±1.4%, 28.6±1.3%, and 28.0±1.3%, respectively. The PDE at normal incidence differs by ±8% (standard deviation) among the three devices. The angular dependence of the reflectivity and PDE was also measured for one of the SiPMs. Both the reflectivity and PDE decrease as the angle of incidence increases. This is the first measurement of an angular dependence of PDE and reflectivity of a SiPM in liquid xenon
    corecore