7 research outputs found

    The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial

    Get PDF
    Background Pathogen surveillance is challenging but crucial in children with cystic fibrosis—who are often nonproductive of sputum even if actively coughing—because infection and lung disease begin early in life. The role of sputum induction as a diagnostic tool for infection has not previously been systematically addressed in young children with cystic fibrosis. We aimed to assess the pathogen yield from sputum induction compared with that from cough swab and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage. Methods This prospective internally controlled interventional trial was done at the Children’s Hospital for Wales (Cardiff, UK) in children with cystic fibrosis aged between 6 months and 18 years. Samples from cough swab, sputum induction, and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage were matched for within-patient comparisons. Primary outcomes were comparative pathogen yield between sputum induction and cough swab for stage 1, and between sputum induction, and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage for stage 2. Data were analysed as per protocol. This study is registered with the UK Clinical Research Network (14615) and with the International Standard Randomised Controlled Trial Network Registry (12473810). Findings Between Jan 23, 2012, and July 4, 2017, 124 patients were prospectively recruited to the trial and had 200 sputum induction procedures for stage 1. 167 (84%) procedures were successful and the procedure was well tolerated. Of the 167 paired samples, 63 (38%) sputum-induction samples were pathogen positive compared with 24 (14%) cough swabs (p<0·0001; odds ratio [OR] 7·5; 95% CI 3·19–17·98). More pathogens were isolated from sputum induction than cough swab (79 [92%] of 86 vs 27 [31%] of 86; p<0·0001). For stage 2, 35 patients had a total of 41 paired sputum-induction and bronchoalveolar lavage procedures. Of the 41 paired samples, 28 (68%) were positive for at least one of the concurrent samples. 39 pathogens were isolated. Sputum induction identified 27 (69%) of the 39 pathogens, compared with 22 (56%; p=0·092; OR 3·3, 95% CI 0·91–12·11) on single-lobe, 28 (72%; p=1·0; OR 1·1, 95% CI 0·41–3·15) on two-lobe, and 33 (85%; p=0·21; OR 2·2, 95% CI 0·76–6·33) on six-lobe bronchoalveolar lavage. Interpretation Sputum induction is superior to cough swab for pathogen detection, is effective at sampling the lower airway, and is a credible surrogate for bronchoalveolar lavage in symptomatic children. A substantial number of bronchoscopies could be avoided if sputum induction is done first and pathogens are appropriately treated. Both sputum induction and six-lobe bronchoalveolar lavage provide independent, sizeable gains in pathogen detection compared with the current gold-standard two-lobe bronchoalveolar lavage. We propose that sputum induction and six-lobe bronchoalveolar lavage combined are used as standard of care for comprehensive lower airway pathogen detection in children with cystic fibrosis

    Cystic fibrosis newborn screening: the importance of bloodspot sample quality

    Get PDF
    Objective Wales has an immunoreactive trypsin (IRT)-DNA cystic fibrosis (CF) newborn screening (NBS) programme. Most CF NBS false negative cases are due to an IRT concentration below the screening threshold. The accuracy of IRT results is dependent on the quality of the dried bloodspot (DBS) sample. The aim of this study was to determine the cause of false negative cases in CF NBS and their relationship to DBS quality. Design Longitudinal birth cohort. Setting Wales 1996–2016. Patients Children with CF. Interventions Identification of all CF patients with triangulation of multiple data sources to detect false negative cases. Main outcome measures False negative cases. Results Over 20 years, 673 952 infants were screened and 239 were diagnosed with CF (incidence 1:2819). The sensitivity of the programme was 0.958, and positive predictive value was 0.476. Eighteen potential false negatives were identified, of whom eight were excluded: four screened outside Wales, two had complex comorbidities, no identified cystic fibrosis transmembrane conductance regulator (CFTR) variants on extended analysis and thus not considered to have CF and two were diagnosed after their 16th birthday. Of the 10 false negatives, 9 had a low DBS IRT and at least one common CFTR variant and thus should have received a sweat test under the programme. DBS cards were available for inspection for five of the nine false negative cases—all were classified as small/insufficient or poor quality. Conclusions The majority of false negatives had a low bloodspot IRT, and this was associated with poor quality DBS. The optimal means to improve the sensitivity of our CF NBS programme would be to improve DBS sample quality
    corecore