8 research outputs found

    Phenotypic screening platform identifies statins as enhancers of immune cell-induced cancer cell death

    No full text
    Background: High-throughput screening (HTS) of small molecule drug libraries has greatly facilitated the discovery of new cancer drugs. However, most phenotypic screening platforms used in the field of oncology are based solely on cancer cell populations and do not allow for the identification of immunomodulatory agents. Methods: We developed a phenotypic screening platform based on a miniaturized co-culture system with human colorectal cancer- and immune cells, providing a model that recapitulates part of the tumor immune microenvironment (TIME) complexity while simultaneously being compatible with a simple image-based readout. Using this platform, we screened 1,280 small molecule drugs, all approved by the Food and Drug Administration (FDA), and identified statins as enhancers of immune cell-induced cancer cell death. Results: The lipophilic statin pitavastatin had the most potent anti-cancer effect. Further analysis demonstrated that pitavastatin treatment induced a pro-inflammatory cytokine profile as well as an overall pro-inflammatory gene expression profile in our tumor-immune model. Conclusion: Our study provides an in vitro phenotypic screening approach for the identification of immunomodulatory agents and thus addresses a critical gap in the field of immuno-oncology. Our pilot screen identified statins, a drug family gaining increasing interest as repurposing candidates for cancer treatment, as enhancers of immune cell-induced cancer cell death. We speculate that the clinical benefits described for cancer patients receiving statins are not simply caused by a direct effect on the cancer cells but rather are dependent on the combined effect exerted on both cancer and immune cells

    Mebendazole-induced M1 polarisation of THP-1 macrophages may involve DYRK1B inhibition

    No full text
    Abstract Objective We recently showed that the anti-helminthic compound mebendazole (MBZ) has immunomodulating activity by inducing a M2 to M1 phenotype switch in monocyte/macrophage models. In the present study we investigated the potential role of protein kinases in mediating this effect. Results MBZ potently binds and inhibits Dual specificity tyrosine-phosphorylation-regulated kinase 1B (DYRK1B) with a Kd and an IC50 of 7 and 360 nM, respectively. The specific DYRK1B inhibitor AZ191 did not mimic the cytokine release profile of MBZ in untreated THP-1 monocytes. However, in THP-1 cells differentiated into macrophages, AZ191 strongly induced a pro-inflammatory cytokine release pattern similar to MBZ and LPS/IFNγ. Furthermore, like MBZ, AZ191 increased the expression of the M1 marker CD80 and decreased the M2 marker CD163 in THP-1 macrophages. In this model, AZ191 also increased phospho-ERK activity although to a lesser extent compared to MBZ. Taken together, the results demonstrate that DYRK1B inhibition could, at least partly, recapitulate immune responses induced by MBZ. Hence, DYRK1B inhibition induced by MBZ may be part of the mechanism of action to switch M2 to M1 macrophages

    Mebendazole is unique among tubulin-active drugs in activating the MEK-ERK pathway

    No full text
    We recently showed that the anti-helminthic compound mebendazole (MBZ) has immunomodulating activity in monocyte/macrophage models and induces ERK signalling. In the present study we investigated whether MBZ induced ERK activation is shared by other tubulin binding agents (TBAs) and if it is observable also in other human cell types. Curated gene signatures for a panel of TBAs in the LINCS Connectivity Map (CMap) database showed a unique strong negative correlation of MBZ with MEK/ERK inhibitors indicating ERK activation also in non-haematological cell lines. L1000 gene expression signatures for MBZ treated THP-1 monocytes also connected negatively to MEK inhibitors. MEK/ERK phosphoprotein activity testing of a number of TBAs showed that only MBZ increased the activity in both THP-1 monocytes and PMA differentiated macrophages. Distal effects on ERK phosphorylation of the substrate P90RSK and release of IL1B followed the same pattern. The effect of MBZ on MEK/ERK phosphorylation was inhibited by RAF/MEK/ERK inhibitors in THP-1 models, CD3/IL2 stimulated PBMCs and a MAPK reporter HEK-293 cell line. MBZ was also shown to increase ERK activity in CD4+ T-cells from lupus patients with known defective ERK signalling. Given these mechanistic features MBZ is suggested suitable for treatment of diseases characterized by defective ERK signalling, notably difficult to treat autoimmune diseases

    The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation

    No full text
    <p>Mebendazole (MBZ), a drug commonly used for helminitic infections, has recently gained substantial attention as a repositioning candidate for cancer treatment. However, the mechanism of action behind its anticancer activity remains unclear. To address this problem, we took advantage of the curated MBZ-induced gene expression signatures in the LINCS Connectivity Map (CMap) database. The analysis revealed strong negative correlation with MEK/ERK1/2 inhibitors. Moreover, several of the most upregulated genes in response to MBZ exposure were related to monocyte/macrophage activation. The MBZ-induced gene expression signature in the promyeloblastic HL-60 cell line was strongly enriched in genes involved in monocyte/macrophage pro-inflammatory (M1) activation. This was subsequently validated using MBZ-treated THP-1 monocytoid cells that demonstrated gene expression, surface markers and cytokine release characteristic of the M1 phenotype. At high concentrations MBZ substantially induced the release of IL-1β and this was further potentiated by lipopolysaccharide (LPS). At low MBZ concentrations, cotreatment with LPS was required for MBZ-stimulated IL-1β secretion to occur. Furthermore, we show that the activation of protein kinase C, ERK1/2 and NF-kappaB were required for MBZ-induced IL-1β release. MBZ-induced IL-1β release was found to be dependent on NLRP3 inflammasome activation and to involve TLR8 stimulation. Finally, MBZ induced tumor-suppressive effects in a coculture model with differentiated THP-1 macrophages and HT29 colon cancer cells. In summary, we report that MBZ induced a pro-inflammatory (M1) phenotype of monocytoid cells, which may, at least partly, explain MBZ’s anticancer activity observed in animal tumor models and in the clinic.</p

    Design, synthesis and in vitro biological evaluation of oligopeptides targeting E. coli type I signal peptidase (LepB)

    No full text
    Type I signal peptidases are potential targets for the development of new antibacterial agents. Here we report finding potent inhibitors of E. coli type I signal peptidase (LepB), by optimizing a previously reported hit compound, decanoyl-PTANA-CHO, through modifications at the N- and C-termini. Good improvements of inhibitory potency were obtained, with IC50s in the low nanomolar range. The best inhibitors also showed good antimicrobial activity, with MICs in the low μg/mL range for several bacterial species. The selection of resistant mutants provided strong support for LepB as the target of these compounds. The cytotoxicity and hemolytic profiles of these compounds are not optimal but the finding that minor structural changes cause the large effects on these properties suggests that there is potential for optimization in future studies.Maria De Rosa and Lu Lu contributed equally to this work.</p

    Discovery and Hit-to-Lead Optimization of Benzothiazole Scaffold-Based DNA Gyrase Inhibitors with Potent Activity against Acinetobacter baumannii and Pseudomonas aeruginosa

    No full text
    We have developed compounds with a promising activity against Acinetobacter baumannii and Pseudomonas aeruginosa, which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor 1, we identified compound 27, featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from A. baumannii and P. aeruginosa, a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of 1 in complex with Escherichia coli GyrB24 and (S)-27 in complex with A. baumannii GyrB23 and P. aeruginosa GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit. In further optimization steps, solubility, plasma free fraction, and other ADME properties of 27 were improved by fine-tuning of lipophilicity. In particular, analogs of 27 with retained anti-Gram-negative activity and improved plasma free fraction were identified. The series was found to be nongenotoxic, nonmutagenic, devoid of mitochondrial toxicity, and possessed no ion channel liabilities
    corecore