5 research outputs found

    Measurements of Radiofrequency Radiation with a Body-Borne Exposimeter in Swedish Schools with Wi-Fi

    No full text
    IntroductionWireless access to the Internet is now commonly used in schools. Many schools give each student their own laptop and utilize the laptops and wireless fidelity (Wi-Fi) connection for educational purposes. Most children also bring their own mobile phones to school. Since children are obliged by law to attend school, a safe environment is important. Lately, it has been discussed if radiofrequency (RF) radiation can have long-term adverse effects on children’s health.MethodThis study conducted exposimetric measurements in schools to assess RF emissions in the classroom by measuring the teachers’ RF exposure in order to approximate the children’s exposure. Teachers in grades 7–12 carried a body-borne exposimeter, EME-Spy 200, in school during 1–4 days of work. The exposimeter can measure 20 different frequency bands from 87 to 5,850 MHz.ResultsEighteen teachers from seven schools participated. The mean exposure to RF radiation ranged from 1.1 to 66.1 µW/m2. The highest mean level, 396.6 µW/m2, occurred during 5 min of a lesson when the teacher let the students stream and watch YouTube videos. Maximum peaks went up to 82,857 µW/m2 from mobile phone uplink.DiscussionOur measurements are in line with recent exposure studies in schools in other countries. The exposure levels varied between the different Wi-Fi systems, and if the students were allowed to use their own smartphones on the school’s Wi-Fi network or if they were connected to GSM/3G/4G base stations outside the school. An access point over the teacher’s head gave higher exposure compared with a school with a wired Internet connection for the teacher in the classroom. All values were far below International Commission on Non-Ionizing Radiation Protection’s reference values, but most mean levels measured were above the precautionary target level of 3–6 µW/m2 as proposed by the Bioinitiative Report. The length of time wireless devices are used is an essential determinant in overall exposure. Measures to minimize children’s exposure to RF radiation in school would include preferring wired connections, allowing laptops, tablets and mobile phones only in flight mode and deactivating Wi-Fi access points, when not used for learning purposes

    Is the Increasing Incidence of Thyroid Cancer in the Nordic Countries Caused by Use of Mobile Phones?

    No full text
    The International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) categorized in 2011 radiofrequency (RF) as a possible human carcinogen, Group 2B. During use of the handheld wireless phone, especially the smartphone, the thyroid gland is a target organ. During the 21st century, the incidence of thyroid cancer is increasing in many countries. We used the Swedish Cancer Register to study trends from 1970 to 2017. During that time period, the incidence increased statistically significantly in women with average annual percentage change (AAPC) +2.13%, 95% confidence interval (CI) +1.43, +2.83%. The increase was especially pronounced during 2010–2017 with annual percentage change (APC) +9.65%, 95% CI +6.68, +12.71%. In men, AAPC increased during 1970–2017 with +1.49%, 95% CI +0.71, +2.28%. Highest increase was found for the time period 2001–2017 with APC +5.26%, 95% CI +4.05, +6.49%. Similar results were found for all Nordic countries based on NORDCAN 1970–2016 with APC +5.83%, 95% CI +4.56, +7.12 in women from 2006 to 2016 and APC + 5.48%, 95% CI +3.92, +7.06% in men from 2005 to 2016. According to the Swedish Cancer Register, the increasing incidence was similar for tumors ≤4 cm as for tumors >4 cm, indicating that the increase cannot be explained by overdiagnosis. These results are in agreement with recent results on increased thyroid cancer risk associated with the use of mobile phones. We postulate that RF radiation is a causative factor for the increasing thyroid cancer incidence

    Radiofrequency radiation at Stockholm Central Railway Station in Sweden and some medical aspects on public exposure to RF fields

    No full text
    The Stockholm Central Railway Station in Sweden was investigated for public radiofrequency (RF) radiation exposure. The exposimeter EME Spy 200 was used to collect the RF exposure data across the railway station. The exposimeter covers 20 different radiofrequency bands from 88 to 5,850 MHz. In total 1,669 data points were recorded. The median value for total exposure was 921 µW/m2 (or 0.092 µW/cm2; 1 µW/m2=0.0001 µW/cm2) with some outliers over 95,544 µW/m2 (6 V/m, upper detection limit). The mean total RF radiation level varied between 2,817 to 4,891 µW/m2 for each walking round. High mean measurements were obtained for GSM + UMTS 900 downlink varying between 1,165 and 2,075 µW/m2. High levels were also obtained for UMTS 2100 downlink; 442 to 1,632 µW/m2. Also LTE 800 downlink, GSM 1800 downlink, and LTE 2600 downlink were in the higher range of measurements. Hot spots were identified, for example close to a wall mounted base station yielding over 95,544 µW/m2 and thus exceeding the exposimeter's detection limit. Almost all of the total measured levels were above the precautionary target level of 3-6 µW/m2 as proposed by the BioInitiative Working Group in 2012. That target level was one-tenth of the scientific benchmark providing a safety margin either for children, or chronic exposure conditions. We compare the levels of RF radiation exposures identified in the present study to published scientific results reporting adverse biological effects and health harm at levels equivalent to, or below those measured in this Stockholm Central Railway Station project. It should be noted that these RF radiation levels give transient exposure, since people are generally passing through the areas tested, except for subsets of people who are there for hours each day of work

    Increasing incidence of thyroid cancer in the Nordic countries with main focus on Swedish data

    Get PDF
    BACKGROUND: Radiofrequency radiation in the frequency range 30 kHz-300 GHz was evaluated to be Group 2B, i.e. 'possibly' carcinogenic to humans, by the International Agency for Research on Cancer (IARC) at WHO in May 2011. Among the evaluated devices were mobile and cordless phones, since they emit radiofrequency electromagnetic fields (RF-EMF). In addition to the brain, another organ, the thyroid gland, also receives high exposure. The incidence of thyroid cancer is increasing in many countries, especially the papillary type that is the most radiosensitive type. METHODS: We used the Swedish Cancer Register to study the incidence of thyroid cancer during 1970-2013 using joinpoint regression analysis. RESULTS: In women, the incidence increased statistically significantly during the whole study period; average annual percentage change (AAPC) +1.19 % (95 % confidence interval (CI) +0.56, +1.83 %). Two joinpoints were detected, 1979 and 2001, with a high increase of the incidence during the last period 2001-2013 with an annual percentage change (APC) of +5.34 % (95 % CI +3.93, +6.77 %). AAPC for all men during 1970-2013 was +0.77 % (95 % CI -0.03, +1.58 %). One joinpoint was detected in 2005 with a statistically significant increase in incidence during 2005-2013; APC +7.56 % (95 % CI +3.34, +11.96 %). Based on NORDCAN data, there was a statistically significant increase in the incidence of thyroid cancer in the Nordic countries during the same time period. In both women and men a joinpoint was detected in 2006. The incidence increased during 2006-2013 in women; APC +6.16 % (95 % CI +3.94, +8.42 %) and in men; APC +6.84 % (95 % CI +3.69, +10.08 %), thus showing similar results as the Swedish Cancer Register. Analyses based on data from the Cancer Register showed that the increasing trend in Sweden was mainly caused by thyroid cancer of the papillary type. CONCLUSIONS: We postulate that the whole increase cannot be attributed to better diagnostic procedures. Increasing exposure to ionizing radiation, e.g. medical computed tomography (CT) scans, and to RF-EMF (non-ionizing radiation) should be further studied. The design of our study does not permit conclusions regarding causality
    corecore