76 research outputs found

    Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFβ signaling in FTAAD

    Get PDF
    BACKGROUND: Thoracic aortic aneurysm / dissection (TAAD) is a common phenotype that may occur as an isolated manifestation or within the constellation of a defined syndrome. In contrast to syndromic TAAD, the elucidation of the genetic basis of isolated TAAD has only recently started. To date, defects have been found in genes encoding extracellular matrix proteins (fibrillin-1, FBN1; collagen type III alpha 1, COL3A1), proteins involved in transforming growth factor beta (TGFβ) signaling (TGFβ receptor 1 and 2, TGFBR1/2; and SMAD3) or proteins that build up the contractile apparatus of aortic smooth muscle cells (myosin heavy chain 11, MYH11; smooth muscle actin alpha 2, ACTA2; and MYLK). METHODS AND RESULTS: In 110 non-syndromic TAAD patients that previously tested negative for FBN1 or TGFBR1/2 mutations, we identified 7 ACTA2 mutations in a cohort of 43 familial TAAD patients, including 2 premature truncating mutations. Sequencing of MYH11 revealed an in frame splice-site alteration in one out of two probands with TAA(D) associated with PDA but none in the series of 22 probands from the cohort of 110 patients with non-syndromic TAAD. Interestingly, immunohistochemical staining of aortic biopsies of a patient and a family member with MYH11 and patients with ACTA2 missense mutations showed upregulation of the TGFβ signaling pathway. CONCLUSIONS: MYH11 mutations are rare and typically identified in patients with TAAD associated with PDA. ACTA2 mutations were identified in 16% of a cohort presenting familial TAAD. Different molecular defects in TAAD may account for a different pathogenic mechanism of enhanced TGFβ signaling

    Trajectory of vitamin D status during pregnancy in relation to neonatal birth size and fetal survival: a prospective cohort study

    Get PDF
    Background: We investigated the associations between vitamin D status in early and late pregnancy with neonatal small for gestational age (SGA), low birth weight (LBW) and preterm delivery. Furthermore, associations between vitamin D status and pregnancy loss were studied. Methods: Serum 25-hydroxyvitamin D (25OHD) was sampled in gestational week ≤ 16 (trimester 1 (T1), N = 2046) and > 31 (trimester 3 (T3), N = 1816) and analysed using liquid chromatography tandem mass spectrometry. Pregnant women were recruited at antenatal clinics in south-west Sweden at latitude 57–58°N. Gestational and neonatal data were retrieved from medical records. Multiple gestations and terminated pregnancies were excluded from the analyses. SGA was defined as weight and/or length at birth < 2 SD of the population mean and LBW as < 2500 g. Preterm delivery was defined as delivery < 37 + 0 gestational weeks and pregnancy loss as spontaneous abortion or intrauterine fetal death. Associations between neonatal outcomes and 25OHD at T1, T3 and change in 25OHD (T3-T1) were studied using logistic regression. Results: T1 25OHD was negatively associated with pregnancy loss and 1 nmol/L increase in 25OHD was associated with 1% lower odds of pregnancy loss (OR 0.99, p = 0.046). T3 25OHD ≥ 100 nmol/L (equal to 40 ng/ml) was associated with lower odds of SGA (OR 0.3, p = 0.031) and LBW (OR 0.2, p = 0.046), compared to vitamin D deficiency (25OHD < 30 nmol/L, or 12 ng/ml). Women with a ≥ 30 nmol/L increment in 25OHD from T1 to T3 had the lowest odds of SGA, LBW and preterm delivery. Conclusions: Vitamin D deficiency in late pregnancy was associated with higher odds of SGA and LBW. Lower 25OHD in early pregnancy was only associated with pregnancy loss. Vitamin D status trajectory from early to late pregnancy was inversely associated with SGA, LBW and preterm delivery with the lowest odds among women with the highest increment in 25OHD. Thus, both higher vitamin D status in late pregnancy and gestational vitamin D status trajectory can be suspected to play a role in healthy pregnancy

    SMAC Mimetic BV6 Induces Cell Death in Monocytes and Maturation of Monocyte-Derived Dendritic Cells

    Get PDF
    Background: Compounds mimicking the inhibitory effect of SMAC / DIABLO on X-linked inhibitor of apoptosis (XIAP) have been developed with the aim to achieve sensitization for apoptosis of tumor cells resistant due to deregulated XIAP expression. It turned out that SMAC mimetics also have complex effects on the NFkB system and TNF signaling. In view of the overwhelming importance of the NFkB transcription factors in the immune system, we analyzed here the effects of the SMAC mimetic BV6 on immune cells. Principal Findings: BV6 induced apoptotic and necrotic cell death in monocytes while T-cells, dendritic cells and macrophages were largely protected against BV6-induced cell death. In immature dendritic cells BV6 treatment resulted in moderate activation of the classical NFkB pathway, but it also diminished the stronger NFkB-inducing effect of TNF and CD40L. Despite its inhibitory effect on TNF- and CD40L signaling, BV6 was able to trigger maturation of immature DCs as indicated by upregulation of CD83, CD86 and IL12. Significance: The demonstrated effects of SMAC mimetics on immune cells may complicate the development of tumor therapeutic concepts based on these compounds but also arise the possibility to exploit them for the development of immune stimulatory therapies

    The open abdomen in trauma and non-trauma patients: WSES guidelines

    Full text link

    The role of NFTAc1 and NFATc2 in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis

    Get PDF
    Multiple Sklerose (MS) ist eine Autoimmunkrankheit, welche durch Infiltration autoreaktiver Immunzellen in das Zentrale Nervensystem (ZNS) gekennzeichnet ist. Hierbei gelten insbesondere Th1- und Th17-Zellen als wichtige Mediatoren der ZNS-Entzündungsreaktion. Beide T-Helfer-Zellarten können durch regulatorische T-Zellen (Tregs) in ihrer Funktion supprimiert werden. NFAT(Nuclear Factors of Activated T cells)-Transkriptionsfaktoren werden nach TCR-Antigen-Stimulation induziert und regeln – als pleiotrope Transkriptionsfaktoren – viele funktionelle Prozesse in T-Zellen. Um die Rolle dieser Faktoren bei der Immunpathogenese von MS zu analysieren, wurden unterschiedliche NFAT-defiziente Mausstämme auf den Krankheitsverlauf des Tiermodells Experimentelle Autoimmune Enzephalomyelitis (EAE) hin untersucht. Es konnte gezeigt werden, dass sowohl der einzelne Verlust von NFATc1 und NFATc2 in CD4+ T-Zellen als auch das Fehlen einer spezifischen C-terminalen Proteinmodifikation von NFATc1, die SUMOylierung, sich abmildernd auswirkten. Der verminderte klinische Ausgang der EAE beruhte allerdings je nach knock-out auf unterschiedlichen Mechanismen. Im Fall des T-Zell-spezifischen Verlustes von NFATc1 (Nfatc1fl/fl x Cd4cre+ Mäuse), erwies sich die EAE aufgrund einer stark eingeschränkten Aktivierung und Effektorzellentwicklung von CD4+ T-Zellen als vermindert. Dies konnte durch eine reduzierte Produktion an pathogenen Effektorzytokinen, wie IFNγ, IL-17A, GM-CSF sowie IL-22 und weniger an IL-17A+ IFNγ+ Doppelproduzenten im ZNS gezeigt werden. Der Verlust von NFATc2 resultierte in einer starken Th2-Antwort im ZNS von Nfatc2-/- EAE-Mäusen einhergehend mit protektiven IL-4- und IL-10-Produzenten. Interessanterweise konnten auch mehr nicht-pathogene Th17-Zellen nachgewiesen werden. Nfatc1/CΔSUMO CD4+ T-Zellen sezernierten sowohl nach in vitro als auch nach in vivo Stimulation erhöhte Mengen von IL-2. In vitro Kulturen von Th1- und Th17-Zellen wiesen neben dieser erhöhten IL-2-Sekretion eine verminderte Produktion von IFNγ und IL-17A auf. In Übereinstimmung mit diesen in vitro Befunden zeigte sich auch in der EAE ein reduziertes Krankheitsbild mit weniger Th1- und Th17-Zellen, dafür aber eine IL-2-geförderte Erhöhung der Treg-Population. Anhand der Erkenntnis, dass NFAT-Faktoren die (Auto)-Immunreaktion entscheidend beeinflussen, könnte die Inhibition einzelner NFAT-Faktoren ein neues Ziel für eine MS-Therapie darstellen.Multiple sclerosis (MS) is an inflammatory autoimmune disease affecting the central nervous system (CNS). T helper cells, in particular Th1 and Th17 cells, are important mediators of this progress and are antagonized by regulatory T cells (Tregs). Members of the transcription factor family “Nuclear Factors of Activated T cells” (NFAT) are induced in response to TCR stimulation and act as pleiotropic regulators of T cell function. To investigate the role of single NFAT factors in the pathophysiology of MS we used several NFAT deficient mice in experimental autoimmune encephalomyelitis (EAE), the animal model of the human disease. We could show that not only the deficiency of NFATc1 or NFATc2, but also the absence of the C-terminal (specific) SUMOylation of NFATc1 reduces the clinical severity of EAE. Regardless of a comparable influence on the disease, the reasons are distinct. In case of T cell specific loss of NFATc1 (Nfatc1fl/fl x Cd4cre+ mice) the clinical score was diminished due to impaired effector functions of CD4+ T cells lacking all NFATc1 isoforms. This was demonstrated by lower levels of pathogenic effector cytokines producing CD4+ T cells, such as IFNγ, IL-17A, GM-CSF, IL-22 producers as well as IL-17A+ IFNγ+ double producers in the CNS of Nfatc1fl/fl x Cd4cre+ mice compared to wild type siblings. Also the course of EAE in Nfatc2-/- mice was found to be ameliorated. The deficiency of NFATc2 resulted in a striking defect of CD4+ T cells in producing IFN-γ, but an enhanced immune responses with Th2-like characteristics. CD4+ T-cells in the ZNS of Nfatc2-/- EAE-diseased mice showed a profound production of protective IL-4 and IL-10 lymphokines. Interestingly, also more non-pathogenic IL-17A producers were found. CD4+ T cells from Nfatc1/CΔSUMO mice produce significantly more IL-2 in vitro and in vivo, whereas cultured Th1 and Th17 cells express less IFNγ and IL-17A, respectively. Consistently, the MOG35-55-induced EAE in Nfatc1/CΔSUMO mice revealed an ameliorated clinical disease severity compared to wild type controls with a robust IL-2-driven increase in Tregs and a reduction in effector T helper cells producing lymphokines. In summary, we could show that individual NFAT factors and their modifications play a distinct role in the pathogenesis of MS. Therefore, targeting or modulating specific NFAT factors could be a therapeutic approach to inhibit undesired NFAT functions in the respective human disease context of MS

    Natalizumab Exerts Direct Signaling Capacity and Supports a Pro-Inflammatory Phenotype in Some Patients with Multiple Sclerosis

    Get PDF
    Natalizumab is a recombinant monoclonal antibody raised against integrin alpha-4 (CD49d). It is approved for the treatment of patients with multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the CNS. While having shown high therapeutic efficacy, treatment by natalizumab has been linked to progressive multifocal leukoencephalopathy (PML) as a serious adverse effect. Furthermore, drug cessation sometimes induces rebound disease activity of unknown etiology. Here we investigated whether binding of this adhesion-blocking antibody to T lymphocytes could modulate their phenotype by direct induction of intracellular signaling events. Primary CD4+ T lymphocytes either from healthy donors and treated with natalizumab in vitro or from MS patients receiving their very first dose of natalizumab were analyzed. Natalizumab induced a mild upregulation of IL-2, IFN-c and IL-17 expression in activated primary human CD4+ T cells propagated ex vivo from healthy donors, consistent with a pro-inflammatory costimulatory effect on lymphokine expression. Along with this, natalizumab binding triggered rapid MAPK/ERK phosphorylation. Furthermore, it decreased CD49d surface expression on effector cells within a few hours. Sustained CD49d downregulation could be attributed to integrin internalization and degradation. Importantly, also CD4+ T cells from some MS patients receiving their very first dose of natalizumab produced more IL-2, IFN-c and IL-17 already 24 h after infusion. Together these data indicate that in addition to its adhesion-blocking mode of action natalizumab possesses mild direct signaling capacities, which can support a pro-inflammatory phenotype of peripheral blood T lymphocytes. This might explain why a rebound of disease activity or IRIS is observed in some MS patients after natalizumab cessation

    SPT and Imaging FCS Provide Complementary Information on the Dynamics of Plasma Membrane Molecules

    No full text
    10.1016/j.bpj.2018.03.013BIOPHYSICAL JOURNAL114102432-244

    Detection and Sequence Analysis of Danish and Swedish Strains of Mink Astrovirus

    No full text
    The sequences of mink astroviruses collected from 11 farms in Denmark and Sweden were analyzed and found to be homologous with one another but different from those of other astroviruses. A species-specific reverse transcriptase-PCR for mink astrovirus was established and shown to be suitable for the analysis of clinical samples
    corecore