65 research outputs found

    Impacts des vers de terre sur les composants et la dynamique du sol (synthèse bibliographique)

    Get PDF
    Impacts of earthworms on soil components and dynamics. A review. Earthworm populations are important decomposers contributing to aggregate formation and nutrient cycling processes involving nitrogen cycles, phosphorus and carbon. They are known to influence soil fertility by participating to important processes in soil such as soil structure regulation and organic matter dynamics. Earthworms also modify the microbial communities through digestion, stimulation and dispersion in casts. Consequently, changes in the activities of earthworm communities, as a result of soil management practices, can also be used as indicators of soil fertility and quality. It is therefore important to understand how earthworm communities affect soil dynamics. This review adresses the current state of knowledge on earthworm's impacts on soil structure and soil organic matter (carbon, nitrogen, and phosphorus) dynamics, with special emphasis on the effects of land management practices on earthworm communities

    Adenyl cyclases and cAMP in plant signaling - past and present

    Get PDF
    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins

    Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Full text link
    Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts

    Inventaire préliminaire de la faune lombricienne dans la Réserve et Domaine de Chasse de Bombo-Lumene, plateaux Batéké (République Démocratique du Congo)

    No full text
    Preliminary Inventory of the Earthworm Fauna in the "Réserve et Domaine de chasse" of Bombo-Lumene Batéké Plateau (Democratic Republic of the Congo). The soil macrofauna is frequently cited for its important role in the physicochemical parameters of cultivated land. Moreover, the tillage frequency and the cropping intensity are key factors to be considered in the management of cropping systems. An inventory related to the changes in land use on the earthworm fauna was carried out. The diversity and the abundance of the harvested species were determined in savannah and in forest ecosystems. The study was conducted in the "Réserve et Domaine de chasse" of Bombo-Lumene located on Batéké Plateau in the Democratic Republic of the Congo. Six types of environments have been prospected: semi-deciduous dense forests, gallery forests, second-growth forests, grasslands, woodland savannas, and crop land. Collected earthworm species are presented according to their habitat, their feeding habit, the kind of prostomium, and their geographical distribution

    Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both <it>in vitro </it>and <it>in vivo</it>. Previous studies have shown that mice lacking Kal7 (Kal7<sup>KO</sup>) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments.</p> <p>Results</p> <p>We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a <b>NMDA receptor-independent </b>form of LTP is shown to be normal in the absence of Kal7.</p> <p>Conclusions</p> <p>These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus.</p

    Death Don't Have No Mercy and Neither Does Calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and Innate Immunity

    No full text
    Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca(2+), nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca(2+) into cells and provide a model linking this Ca(2+) current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca(2+) current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen–associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca(2+) current, which may be linked to NO generation due to buildup of cytosolic Ca(2+)/calmodulin

    Crop residue management in arable cropping systems under temperate climate. Part 1: Soil biological and chemical (phosphorus and nitrogen) properties. A review

    No full text
    Introduction. Interacting soil organisms support biological processes that participate in soil functions, organic matter decomposition, and nutrient cycling. Earthworms and microorganisms play a range of beneficial roles in agricultural systems, including increased organic matter mineralization, nutrient cycling, and soil structure stabilization. Literature. The following aspects of crop residue management effects are examined in this paper: (i) earthworm composition and structure; (ii) soil microbial communities; and (iii) phosphorus (P) and nitrogen (N) element availability and distribution in the soil profile. Conventional tillage (ploughing) is often reported to generate decreased soil organism abundance and diversity, primarily earthworms and microorganisms, as well as a uniform distribution of the nutrients P and N within the ploughed soil horizon. Soil residue incorporation of mineral particles can maintain P and N levels, however returning soil also increases aeration and the activation of microbial activity. Hence, comparisons of tillage effects on soil biological functioning and nutrient cycling remain unclear. Conclusions. This review highlights the challenges in establishing definitive evidence regarding the effects of crop residue management on soil organisms and nutrient dynamics. The studies examined reported variability in soil and climate, and the complexity of soil processes contributed to the absence of clear findings. Further research is required under temperate climate conditions

    Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells

    No full text
    myo-Inositol hexakisphosphate (InsP6) is the most abundant inositol phosphate in cells, yet it remains the most enigmatic of this class of signaling molecule. InsP6 plays a role in the processes by which the drought stress hormone abscisic acid (ABA) induces stomatal closure, conserving water and ensuring plant survival. Previous work has shown that InsP6 levels in guard cells are elevated in response to ABA, and InsP6 inactivates the plasma membrane inward K+ conductance (IK,in) in a cytosolic calcium-dependent manner. The use of laser-scanning confocal microscopy in dye-loaded patch-clamped guard cell protoplasts shows that release of InsP6 from a caged precursor mobilizes calcium. Measurement of calcium (barium) currents ICa in patch-clamped protoplasts in whole cell mode shows that InsP6 has no effect on the calcium-permeable channels in the plasma membrane activated by ABA. The InsP6-mediated inhibition of IK,in can also be observed in the absence of external calcium. Thus the InsP6-induced increase in cytoplasmic calcium does not result from calcium influx but must arise from InsP6-triggered release of calcium from endomembrane stores. Measurements of vacuolar currents in patch-clamped isolated vacuoles in whole-vacuole mode showed that InsP6 activates both the fast and slow conductances of the guard cell vacuole. These data define InsP6 as an endomembrane-acting calcium-release signal in guard cells; the vacuole may contribute to InsP6-triggered Ca2+ release, but other endomembranes may also be involved

    The hyperpolarization-activated, cyclic nucleotide-gated channel resides on myocytes in mouse bladders and contributes to adrenergic-induced detrusor relaxation.

    No full text
    Control of urinary continence is predicated on sensory signaling about bladder volume. Bladder sensory nerve activity is dependent on tension, implicating autonomic control over detrusor myocyte activity during bladder filling. Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels are known contributors to bladder control, but their mechanism of action is not well understood. The lack of a definitive identification of cell type(s) expressing HCN in the bladder presents a significant knowledge gap. We recently reported a complete transcriptomic atlas of the C57BL/6 mouse bladder showing the dominant HCN paralog in mouse bladder
    corecore