270 research outputs found

    Cisplatin sensitivity and thermochemosensitisation in thermotolerant cDDP-sensitive and -resistant cell lines.

    Get PDF
    Development of thermotolerance is an important phenomenon that must be considered when thermochemotherapy with multiple heat treatments is used clinically. To study the effect of thermotolerance on cellular cisplatin (cDDP) sensitivity at 37 degrees C and 43 degrees C in cell lines with different cDDP sensitivities, two Ehrlich ascites tumour cell lines (one with high cDDP sensitivity and one with in vitro acquired cDDP resistance) were used. The results indicate that in both cell lines the state of thermotolerance per se did not affect the cDDP sensitivity at 37 degrees C. Thus, general elevations in 'all' heat shock protein levels as found in thermotolerant cells apparently do not influence cDDP sensitivity to a considerable extent. The sensitising effect of a (second) heat treatment given simultaneously with a cDDP treatment was less in thermotolerant cells. Thermal enhancement ratios (TERs) at the 10% survival level for heat doses of 43 degrees C for 30 min or 43 degrees C for 60 min were reduced by a factor of 1.6 and 2.1 in cDDP-resistant and -sensitive thermotolerant cells respectively, as compared with control cells. Thus, protection against heat damage in thermotolerant cells seems to be paralleled by diminished thermal chemosensitisation. Although the effect of thermotolerance on the cDDP-sensitising effect was less pronounced in the resistant cells, a modifying effect on the resistance factor was not achieved

    Enhanced cytostatic activity of the sesquiterpene lactone eupatoriopicrin by glutathione depletion.

    Get PDF
    Eupatoriopicrin (EUP), a sesquiterpene lactone from Eupatorium cannabinum L., possesses cytostatic activity. This was demonstrated for FIO 26 cells in vitro with the aid of a clonogenic assay and in vivo by tumour growth delay in FIO 26 and Lewis lung tumour-bearing mice. In vitro the IC50 for 1 h exposure to EUP was 1.5 microgram ml-1 (4.1 nmol ml-1). This concentration depleted about 25% of its cellular GSH concentration. Pretreatment of FIO 26 cells with BSO, resulting in greater than 99%. GSH depletion, enhanced the cytotoxic effect of EUP. The dose-enhancement factor at the level of 10% cell survival was 2.3. Growth inhibition of the Lewis lung carcinoma and the FIO 26 fibrosarcoma, solidly growing in C57Bl mice, was found after i.v. injection of 20 or 40 mg kg-1 EUP, at a tumour volume of about 500 microliters. Pretreatment with BSO at a dose of 4 mmol kg-1 i.p., 6 h before EUP administration, resulted in a significantly stronger growth delay of both tumours compared with EUP only. At the time of EUP treatment, cellular GSH in the tumours was reduced by BSO treatment to about 60%. It is concluded that EUP possesses antitumour activity in vivo and that chemosensitisation of EUP may be accomplished by pretreatment with BSO, indicating that endogenous GSH protects against the cytostatic action of EUP

    Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells.

    Get PDF
    In this study, the mechanism(s) by which heat increases cis-diamminedichloroplatinum (cisplatin, cDDP) sensitivity in cDDP-sensitive and -resistant cell lines of murine as well as human origin were investigated. Heating cells at 43 degrees C during cDDP exposure was found to increase drug accumulation significantly in the cDDP-resistant cell lines but had little effect on drug accumulation in the cDDP-sensitive cell lines. DNA adduct formation, however, was significantly increased in all cell lines studied. Furthermore, ongoing formation of platinum (Pt)-DNA adducts after the end of cDDP treatment was enhanced and/or adduct removal was decreased in heated cells, resulting in relatively more DNA damage remaining at 24 h after the end of cDDP exposure. Correlation plots with survival revealed weak correlations with cellular Pt accumulation (r2 = 0.59) and initial Pt-DNA adduct formation (r2 = 0.64). Strong correlations, however, were found with Pt-DNA adducts at 6 h (r2 = 0.97) and 24 h (r2 = 0.89) after the incubation with the drug. In conclusion, the mechanism by which heat sensitizes cells for cDDP action seems to be the sum of multiple factors, which comprise heat effects on accumulation, adduct formation and adduct processing. This mechanism did not seem to differ between cDDP-sensitive and -resistant cells, emphasizing the potential of hyperthermia to reduce cDDP resistance

    Protein disulfide isomerases as CSF biomarkers for the neuronal response to tau pathology

    Get PDF
    Introduction: Cerebrospinal fluid (CSF) biomarkers for specific cellular disease processes are lacking for tauopathies. In this translational study we aimed to identify CSF biomarkers reflecting early tau pathology-associated unfolded protein response (UPR) activation. Methods: We employed mass spectrometry proteomics and targeted immunoanalysis in a combination of biomarker discovery in primary mouse neurons in vitro and validation in patient CSF from two independent large multicentre cohorts (EMIF-AD MBD, n = 310; PRIDE, n = 771). Results: First, we identify members of the protein disulfide isomerase (PDI) family in the neuronal UPR-activated secretome and validate secretion upon tau aggregation in vitro. Next, we demonstrate that PDIA1 and PDIA3 levels correlate with total- and phosphorylated-tau levels in CSF. PDIA1 levels are increased in CSF from AD patients compared to controls and patients with tau-unrelated frontotemporal and Lewy body dementia (LBD). Highlights: Neuronal unfolded protein response (UPR) activation induces the secretion of protein disulfide isomerases (PDIs) in vitro. PDIA1 is secreted upon tau aggregation in neurons in vitro. PDIA1 and PDIA3 levels correlate with total and phosphorylated tau levels in CSF. PDIA1 levels are increased in CSF from Alzheimer's disease (AD) patients compared to controls. PDIA1 levels are not increased in CSF from tau-unrelated frontotemporal dementia (FTD) and Lewy body dementia (LBD) patients

    Assessing fitness to drive:A validation study on patients with mild cognitive impairment

    Get PDF
    Objectives: There is no consensus yet on how to determine which patients with cognitive impairment are able to drive a car safely and which are not. Recently, a strategy was composed for the assessment of fitness to drive, consisting of clinical interviews, a neuropsychological assessment, and driving simulator rides, which was compared with the outcome of an expert evaluation of an on-road driving assessment. A selection of tests and parameters of the new approach revealed a predictive accuracy of 97.4% for the prediction of practical fitness to drive on an initial sample of patients with Alzheimer's dementia. The aim of the present study was to explore whether the selected variables would be equally predictive (i.e., valid) for a closely related group of patients; that is, patients with mild cognitive impairment (MCI).Methods: Eighteen patients with mild cognitive impairment completed the proposed approach to the measurement of fitness to drive, including clinical interviews, a neuropsychological assessment, and driving simulator rides. The criterion fitness to drive was again assessed by means of an on-road driving evaluation. The predictive validity of the fitness to drive assessment strategy was evaluated by receiver operating characteristic (ROC) analyses.Results: Twelve patients with MCI (66.7%) passed and 6 patients (33.3%) failed the on-road driving assessment. The previously proposed approach to the measurement of fitness to drive achieved an overall predictive accuracy of 94.4% in these patients. The application of an optimal cutoff resulted in a diagnostic accuracy of 100% sensitivity toward unfit to drive and 83.3% specificity toward fit to drive. Further analyses revealed that the neuropsychological assessment and the driving simulator rides produced rather stable prediction rates, whereas clinical interviews were not significantly predictive for practical fitness to drive in the MCI patient sample.Conclusions: The selected measures of the previously proposed approach revealed adequate accuracy in identifying fitness to drive in patients with MCI. Furthermore, a combination of neuropsychological test performance and simulated driving behavior proved to be the most valid predictor of practical fitness to drive.</p

    Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model

    Get PDF
    Background: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. Results: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. Conclusions: TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones

    The MMSE should not be the sole indicator of fitness to drive in mild Alzheimer's dementia

    Get PDF
    Since Alzheimer’s disease may affect driving performance, patients with Alzheimer’s disease are assessed on fitness to drive. On-road driving assessments are widely used, and attempts have also been made to develop strategies to assess fitness to drive in a clinical setting. Preferably, a first indication of fitness to drive is obtained quickly after diagnosis using a single test such as the Mini-Mental State Examination (MMSE). The aim of this study is to investigate whether the MMSE can be used to predict whether patients with Alzheimer’s disease will pass or fail an on-road driving assessment. Patients with Alzheimer’s disease (n = 81) participated in a comprehensive fitness-to-drive assessment which included the MMSE as well as an on-road driving assessment [PLoS One 11(2):e0149566, 2016]. MMSE cutoffs were applied as suggested by Versijpt and colleagues [Acta Neurol Belg 117(4):811–819, 2017]. All patients with Alzheimer’s disease who scored below the lower cutoff (MMSE ≤ 19) failed the on-road driving assessment. However, a third of the patients with Alzheimer’s disease who scored above the upper cutoff (MMSE ≥ 25) failed the on-road driving assessment as well. We conclude that the MMSE alone has insufficient predictive value to correctly identify fitness to drive in patients with very mild-to-mild Alzheimer’s disease implicating the need for comprehensive assessments to determine fitness to drive in a clinical setting

    CSF proteomics in autosomal dominant Alzheimer's disease highlights parallels with sporadic disease

    Get PDF
    Autosomal dominant Alzheimer's disease (ADAD) offers a unique opportunity to study pathophysiological changes in a relatively young population with few comorbidities. A comprehensive investigation of proteome changes occurring in ADAD could provide valuable insights into AD-related biological mechanisms and uncover novel biomarkers and therapeutic targets. Furthermore, ADAD might serve as a model for sporadic AD, but in-depth proteome comparisons are lacking. We aimed to identify dysregulated CSF proteins in ADAD and determine the degree of overlap with sporadic AD. We measured 1472 proteins in CSF of PSEN1 or APP mutation carriers (n = 22) and age- and sex-matched controls (n = 20) from the Amsterdam Dementia Cohort using proximity extension-based immunoassays (PEA). We compared protein abundance between groups with two-sided t-tests and identified enriched biological pathways. Using the same protein panels in paired plasma samples, we investigated correlations between CSF proteins and their plasma counterparts. Finally, we compared our results with recently published PEA data from an international cohort of sporadic AD (n = 230) and non-AD dementias (n = 301). All statistical analyses were false discovery rate-corrected. We detected 66 differentially abundant CSF proteins (65 increased, 1 decreased) in ADAD compared to controls (q &lt; 0.05). The most strongly upregulated proteins (fold change &gt;1.8) were related to immunity (CHIT1, ITGB2, SMOC2), cytoskeletal structure (MAPT, NEFL) and tissue remodelling (TMSB10, MMP-10). Significant CSF-plasma correlations were found for the upregulated proteins SMOC2 and LILR1B. Of the 66 differentially expressed proteins, 36 had been measured previously in the sporadic dementias cohort, 34 of which (94%) were also significantly upregulated in sporadic AD, with a strong correlation between the fold changes of these proteins in both cohorts (rs = 0.730, P &lt; 0.001). Twenty-nine of the 36 proteins (81%) were also upregulated among non-AD patients with suspected AD co-pathology. This CSF proteomics study demonstrates substantial biochemical similarities between ADAD and sporadic AD, suggesting involvement of the same biological processes. Besides known AD-related proteins, we identified several relatively novel proteins, such as TMSB10, MMP-10 and SMOC2, which have potential as novel biomarkers. With shared pathophysiological CSF changes, ADAD study findings might be translatable to sporadic AD, which could greatly expedite therapy development.</p

    Performance of a [18F]Flortaucipir PET Visual Read Method Across the Alzheimer Disease Continuum and in Dementia With Lewy Bodies

    Get PDF
    Background and Objectives: Recently, the US Food and Drug Administration approved the tau-binding radiotracer [18F]flortaucipir and an accompanying visual read method to support the diagnostic process in cognitively impaired patients assessed for Alzheimer disease (AD). Studies evaluating this visual read method are limited. In this study, we evaluated the performance of the visual read method in participants along the AD continuum and dementia with Lewy bodies (DLB) by determining its reliability, accordance with semiquantitative analyses, and associations with clinically relevant variables. // Methods: We included participants who underwent tau-PET at Amsterdam University Medical Center. A subset underwent follow-up tau-PET. Two trained nuclear medicine physicians visually assessed all scans. Inter-reader agreement was calculated using Cohen κ. To examine the concordance of visual read tau positivity with semiquantification, we defined standardized uptake value ratio (SUVr) positivity using different threshold approaches. To evaluate the prognostic value of tau-PET visual read, we performed linear mixed models with longitudinal Mini-Mental State Examination (MMSE). // Results: We included 263 participants (mean age 68.5 years, 45.6% female), including 147 cognitively unimpaired (CU) participants, 97 amyloid-positive participants with mild cognitive impairment or AD dementia (AD), and 19 participants with DLB. The visual read inter-reader agreement was excellent (κ = 0.95, CI 0.91–0.99). None of the amyloid-negative CU participants (0/92 [0%]) and 1 amyloid-negative participant with DLB (1/12 [8.3%]) were tau-positive. Among amyloid-positive participants, 13 CU participants (13/52 [25.0%]), 85 with AD (85/97 [87.6%]), and 3 with DLB (3/7 [42.9%]) were tau-positive. Two-year follow-up visual read status was identical to baseline. Tau-PET visual read corresponded strongly to SUVr status, with up to 90.4% concordance. Visual read tau positivity was associated with a decline on the MMSE in CU participants (β = −0.52, CI −0.74 to −0.30, p < 0.001) and participants with AD (β = −0.30, CI −0.58 to −0.02, p = 0.04). // Discussion: The excellent inter-reader agreement, strong correspondence with SUVr, and longitudinal stability indicate that the visual read method is reliable and robust, supporting clinical application. Furthermore, visual read tau positivity was associated with prospective cognitive decline, highlighting its additional prognostic potential. Future studies in unselected cohorts are needed for a better generalizability to the clinical population. // Classification of Evidence: This study provides Class II evidence that [18F]flortaucipir visual read accurately distinguishes patients with low tau-tracer binding from those with high tau-tracer binding and is associated with amyloid positivity and cognitive decline. // Glossary: Aβ=β-amyloid; AD=Alzheimer disease; CU=cognitively unimpaired; DLB=dementia with Lewy bodies; US FDA=US Food and Drug Administration; GMM=Gaussian mixture model; LMM=linear mixed model; MCI=mild cognitive impairment; MMSE=Mini-Mental State Examination; OR=odds ratio; ROI=region of interest; SCD=subjective cognitive decline; SUVr=standardized uptake value ratio
    • …
    corecore