76 research outputs found

    Virus Infections in Early Childhood, Cow’s Milk Formula Exposure and Genetic Predisposition in the Development of Diabetes-Associated Autoimmunity

    Get PDF
    Varhaislapsuuden virusinfektioiden, lehmänmaitopohjaisen äidinmaitovastikeen ja geneettisen alttiuden merkitys diabetekseen liittyvän autoimmuniteetin kehittymisessä Tyypin 1 diabetes on autoimmuunisairaus, joka syntyy haiman insuliinia tuottavien beta-solujen tuhouduttua elimistön oman immuunipuolustusjärjestelmän hyökkäyksen seurauksena. Sekä perimän että ympäristötekijöiden arvellaan vaikuttavan tautiprosessiin, mutta taudin tarkkaa syntymekanismia ei tunneta. Tutkimuksen tarkoituksena oli selvittää varhaislapsuuden ympäristötekijöiden vaikutusta beta-soluautoimmuniteetin syntyyn, erityispaino tutkimuksessa oli ympäristötekijöiden yhteisvaikutuksessa sekä geneettisten riskitekijöiden ja ympäristötekijöiden vuorovaikutuksessa. Varhaislapsuudessa sairastettu sytomegalovirus- tai enterovirusinfektio ei lisännyt beta-soluautoimmuniteetin riskiä lapsilla, joilla on geneettisesti kohonnut riski sairastua tyypin 1 diabetekseen. Ennen puolen vuoden ikää sairastettu rotavirusinfektio lisäsi hieman tyypin 1 diabetekseen liittyvän autoimmuniteetin riskiä. Tarkemmassa analyysissa varhaislapsuuden enterovirusinfektio osoittautui kuitenkin autovasta-aineiden muodostumisen riskitekijäksi niiden lasten joukossa, jotka olivat saaneet lehmänmaitopohjaista äidinmaidon vastiketta ensimmäisten elinkuukausien aikana. Tämä löydös viittaa enterovirusinfektion ja lehmänmaitopohjaisen vastikkeen yhteisvaikutukseen tyypin 1 diabetekseen liittyvän autoimmuniteetin synnyssä. Löydösten mukaan PTPN22 geenin C1858T polymorfismi vaikuttaa CD4+ T solujen aktivaatioon ja proliferaatiovasteeseen, 1858T alleeliin liittyy alentunut T-soluresepto-rivälitteinen aktivaatio. 1858T alleelin kantajuuteen liittyy lisäksi lisääntynyt autovasta-aineiden ja kliinisen diabeteksen ilmaantuvuus. Tämä yhteys rajoittui yksilöihin, jotka olivat altistuneet lehmänmaitopohjaiselle vastikkeelle ennen kuuden kuukauden ikää. Tulosten mukaan sekä ympäristötekijöiden väliset yhteisvaikutukset että perimä vaikuttavat yksittäisen ympäristötekijän merkitykseen tyypin 1 diabetekseen liittyvän autoimmuniteetin synnyssä. Nämä yhteisvaikutukset ympäristötekijöiden kesken ja perimän ja ympäristötekijöiden välillä selittävät aiemmin julkaistujen tulosten ristiriittaisuutta tutkimuksissa, joissa on analysoitu vain yhden ympäristötekijän vaikutusta diabeteksen ilmaantuvuuteen.Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin producing pancreatic beta cells. Although both genetic and environmental factors affect the disease susceptibility, the exact disease pathogenesis is not known. We aimed to analyse the effect of various environmental factors during early childhood on the appearance of autoimmunity associated with T1D as well as clinical diabetes, with special emphasis on the interplay between different environmental factors and gene-environment interactions. Cytomegalovirus and enterovirus infections were not found to predispose to beta-cell autoimmunity, but early-acquired rotavirus infection was observed to enhance the appearance of beta-cell-specific autoantibodies in a cohort of subjects with HLA conferred T1D risk. Interestingly, among subjects exposed to cow’s milk (CM) –based formula nutrition in early infancy, early-acquired enterovirus infection enhanced the appearance of T1D-associated autoantibodies, suggesting an interaction between these two environmental factors in T1D autoimmunity. PTPN22 C1858T gene polymorphism was found to be associated with altered CD4+ T-cell activation and proliferation response, indicating an altered T-cell signalling among subjects with 1858T allele associated with T1D risk. Moreover, the presence of the T allele was associated with the development of humoral signs of β-cell autoimmunity and overt T1D. Interestingly, this phenomenon was restricted to subjects exposed to CM-based formula before six months of age, suggesting a gene environment interaction. These data suggest that the effect of various environmental triggers on the induction of T1D-associated autoimmunity is altered by other environmental factors and genetic predisposition.Siirretty Doriast

    Childhood manifestations of 22q11.2 deletion syndrome: A Finnish nationwide register-based cohort study

    Get PDF
    AimThe aim of the study was to describe the clinical manifestations of 22q11.2 deletion syndrome patients in the Finnish paediatric population.MethodsNationwide registry data including all diagnoses and procedures of every public hospital in Finland between 2004 and 2018 along with mortality and cancer registry data were retrieved. Patients born during the study period and with an ICD-10 code of D82.1 or Q87.06 were included as having 22q11.2 deletion syndrome. A control group was formed with patients born during the study period and with benign cardiac murmur diagnosed under the age of 1 year.ResultsWe identified 100 pediatric patients with 22q11.2 deletion syndrome (54% males, median age at diagnosis ConclusionThe 22q11.2 deletion syndrome is associated with increased mortality and substantial multimorbidity in children. A structured multidisciplinary approach is necessary for managing patients with 22q11.2 deletion syndrome.</p

    Non-HLA Gene Polymorphisms in the Pathogenesis of Type 1 Diabetes : Phase and Endotype Specific Effects

    Get PDF
    The non-HLA loci conferring susceptibility to type 1 diabetes determine approximately half of the genetic disease risk, and several of them have been shown to affect immune-cell or pancreatic beta-cell functions. A number of these loci have shown associations with the appearance of autoantibodies or with progression from seroconversion to clinical type 1 diabetes. In the current study, we have re-analyzed 21 of our loci with prior association evidence using an expanded DIPP follow-up cohort of 976 autoantibody positive cases and 1,910 matched controls. Survival analysis using Cox regression was applied for time periods from birth to seroconversion and from seroconversion to type 1 diabetes. The appearance of autoantibodies was also analyzed in endotypes, which are defined by the first appearing autoantibody, either IAA or GADA. Analyzing the time period from birth to seroconversion, we were able to replicate our previous association findings at PTPN22, INS, and NRP1. Novel findings included associations with ERBB3, UBASH3A, PTPN2, and FUT2. In the time period from seroconversion to clinical type 1 diabetes, prior associations with PTPN2, CD226, and PTPN22 were replicated, and a novel association with STAT4 was observed. Analyzing the appearance of autoantibodies in endotypes, the PTPN22 association was specific for IAA-first. In the progression phase, STAT4 was specific for IAA-first and ERBB3 to GADA-first. In conclusion, our results further the knowledge of the function of non-HLA risk polymorphisms in detailing endotype specificity and timing of disease development.Peer reviewe

    Associations between deduced first islet specific autoantibody with sex, age at diagnosis and genetic risk factors in young children with type 1 diabetes

    Get PDF
    Objectives We aimed to further characterize demography and genetic associations of type 1 diabetes "endotypes" defined by the first appearing islet specific autoantibodies. Research Design and Methods We analyzed 3277 children diagnosed before the age of 10 years from the Finnish Pediatric Diabetes Register. The most likely first autoantibody could be deduced in 1636 cases (49.9%) based on autoantibody combinations at diagnosis. Distribution of age, sex, HLA genotypes and allele frequencies of 18 single nucleotide polymorphisms (SNPs) in non-HLA risk genes were compared between the endotypes. Results Two major groups with either glutamic acid decarboxylase (GADA) or insulin autoantibodies (IAA) as the deduced first autoantibody showed significant differences in their demographic and genetic features. Boys and children diagnosed at young age had more often IAA-initiated autoimmunity whereas GADA-initiated autoimmunity was observed more frequently in girls and in subjects diagnosed at an older age. IAA as the first autoantibody was also most common in HLA genotype groups conferring high-disease risk while GADA first was seen more evenly and frequently in HLA groups associated with lower type 1 diabetes risk. The risk alleles in IKZF4 and ERBB3 genes were associated with GADA-initiated whereas those in PTPN22, INS and PTPN2 genes were associated with IAA-initiated autoimmunity. Conclusions The results support the assumption that in around half of the young children the first autoantibody can be deduced based on islet autoantibody combinations at disease diagnosis. Strong differences in sex and age distributions as well as in genetic associations could be observed between GADA- and IAA-initiated autoimmunity.Peer reviewe

    Associations between deduced first islet specific autoantibody with sex, age at diagnosis and genetic risk factors in young children with type 1 diabetes

    Get PDF
    Objectives We aimed to further characterize demography and genetic associations of type 1 diabetes "endotypes" defined by the first appearing islet specific autoantibodies. Research Design and Methods We analyzed 3277 children diagnosed before the age of 10 years from the Finnish Pediatric Diabetes Register. The most likely first autoantibody could be deduced in 1636 cases (49.9%) based on autoantibody combinations at diagnosis. Distribution of age, sex, HLA genotypes and allele frequencies of 18 single nucleotide polymorphisms (SNPs) in non-HLA risk genes were compared between the endotypes. Results Two major groups with either glutamic acid decarboxylase (GADA) or insulin autoantibodies (IAA) as the deduced first autoantibody showed significant differences in their demographic and genetic features. Boys and children diagnosed at young age had more often IAA-initiated autoimmunity whereas GADA-initiated autoimmunity was observed more frequently in girls and in subjects diagnosed at an older age. IAA as the first autoantibody was also most common in HLA genotype groups conferring high-disease risk while GADA first was seen more evenly and frequently in HLA groups associated with lower type 1 diabetes risk. The risk alleles in IKZF4 and ERBB3 genes were associated with GADA-initiated whereas those in PTPN22, INS and PTPN2 genes were associated with IAA-initiated autoimmunity. Conclusions The results support the assumption that in around half of the young children the first autoantibody can be deduced based on islet autoantibody combinations at disease diagnosis. Strong differences in sex and age distributions as well as in genetic associations could be observed between GADA- and IAA-initiated autoimmunity.Peer reviewe

    Age at Seroconversion, HLA Genotype, and Specificity of Autoantibodies in Progression of Islet Autoimmunity in Childhood

    Get PDF
    Context: Children with initial autoantibodies to either insulin (IAA) or glutamic acid decarboxylase (GADA) differ in peak age of seroconversion and have different type 1 diabetes (T1D) risk gene associations, suggesting heterogeneity in the disease process. Objective: To compare the associations of age at seroconversion, HLA risk, and specificity of secondary autoantibodies with the progression of islet autoimmunity between children with either IAA or GADA as their first autoantibody. Design and methods: A cohort of 15,253 children with HLA-associated increased risk of T1D participated in a follow-up program in which islet autoantibodies were regularly measured. The median follow-up time was 6.7 years. Spearman correlation, Kaplan-Meier survival plots, and Cox proportional-hazard models were used for statistical analyses. Results: Persistent positivity for at least one of the tested autoantibodies was detected in 998 children; 388 of children progressed to clinical T1D. Young age at initial seroconversion was associated with a high probability of expansion of IAA-initiated autoimmunity and progression to clinical diabetes, whereas expansion of GADA-initiated autoimmunity and progression to diabetes were not dependent on initial seroconversion age. The strength of HLA risk affected the progression of both IAA- and GADA-initiated autoimmunity. The simultaneous appearance of two other autoantibodies increased the rate of progression to diabetes compared with that of a single secondary autoantibody among subjects with GADA-initiated autoimmunity but not among those with IAA as the first autoantibody. Conclusions: Findings emphasize the differences in the course of islet autoimmunity initiated by either IAA or GADA supporting heterogeneity in the pathogenic process.Peer reviewe

    Characteristics of Slow Progression to Type 1 Diabetes in Children With Increased HLA-Conferred Disease Risk

    Get PDF
    Context: Characterization of slow progression to type 1 diabetes (T1D) may reveal novel means for prevention of T1D. Slow progressors might carry natural immunomodulators that delay beta-cell destruction and mediate preservation of beta-cell function. Objective: To identify demographic, genetic, and immunological characteristics of slow progression from seroconversion to clinical T1D. Design: H LA-susceptible children (n = 7410) were observed from birth for islet cell antibody (ICA), insulin autoantibody (IAA), glutamic acid decarboxylase (GADA), and islet antigen-2 autoantibodies (IA-2A), and for clinical T1D. Disease progression that lasted >= 7.26 years (slowest) quartile from initial seroconversion to diagnosis was considered slow. Autoantibody and genetic characteristics including 45 non-HLA single nucleotide polymorphisms (SNPs) predisposing to T1D were analyzed. Results: By the end of 2015, 1528 children (21 %) had tested autoantibody positive and 247 (16%) had progressed to T1D. The median delay from seroconversion to diagnosis was 8.7 years in slow (n = 62, 25%) and 3.0 years in other progressors. Compared with other progressors, slow progressors were less often multipositive, had lower ICA and IAA titers, and lower frequency of IA-2A at seroconversion. Slow progressors were born more frequently in the fall, whereas other progressors were born more often in the spring. Compared with multipositive nonprogressors, slow progressors were younger, had higher ICA titers, and higher frequency of IAA and multiple autoantibodies at seroconversion. We found no differences in the distributions of non-HLA SNPs between progressors. Conclusions: We observed differences in autoantibody characteristics and the season of birth among progressors, but no characteristics present at seroconversion that were specifically predictive for slow progression.Peer reviewe

    Harvinaissairaudet tulee saada rekistereihin

    Get PDF
    Harvinaissairauksien hoito vaatii ylikansallisia rekistereitä. Suomen pitäisi voida osallistua niihin ilman lainsäädännön esteitä.</p

    Tri-SNP polymorphism in the intron of HLA-DRA1 affects type 1 diabetes susceptibility in the Finnish population

    Get PDF
    Genes in the HLA class II region include the most important inherited risk factors for type 1 diabetes (T1D) although also polymorphisms outside the HLA region modulate the predisposition to T1D. This study set out to confirm a recent observation in which a novel expression quantitative trait locus was formed by three single nucleotide polymorphisms (SNP) in the intron of HLA-DRA1 in DR3-DQ2 haplotypes. The SNPs significantly increased the risk for T1D in DR3-DQ2 homozygous individuals and we intended to further explore this association, in the Finnish population, by comparing two DR3-DQ2 positive genotypes. Cohorts with DR3-DQ2/DR3-DQ2 (N = 570) and DR3-DQ2/DR1-DQ5 (N = 1035) genotypes were studied using TaqMan analysis that typed for rs3135394, rs9268645 and rs3129877. The tri-SNP haplotype was significantly more common in cases than controls in the DR3-DQ2/DR3-DQ2 cohort (OR = 1.70 CI 95% = 1.15-2.51P = 0.007). However, no significant associations could be observed in the DR3-DQ2/DR1-DQ5 cohort. (c) 2021 The Authors. Published by Elsevier Inc. on behalf of American Society for Histocompatibility and Immunogenetics. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).Peer reviewe

    Multiplexed High-Throughput Serological Assay for Human Enteroviruses

    Get PDF
    Immunological assays detecting antibodies against enteroviruses typically use a single enterovirus serotype as antigen. This limits the ability of such assays to detect antibodies against different enterovirus types and to detect possible type-specific variation in antibody responses. We set out to develop a multiplexed assay for simultaneous detection of antibodies against multiple enterovirus and rhinovirus types encompassing all human infecting species. Seven recombinant VP1 proteins from enteroviruses EV-A to EV-D and rhinoviruses RV-A to RV-C species were produced. Using Meso Scale Diagnostics U-PLEX platform we were able to study antibody reactions against these proteins as well as non-structural enterovirus proteins in a single well with 140 human serum samples. Adults had on average 33-fold stronger antibody responses to these antigens (p < 10−11) compared to children, but children had less cross-reactivity between different enterovirus types. The results suggest that this new high-throughput assay offers clear benefits in the evaluation of humoral enterovirus immunity in children, giving more exact information than assays that are based on a single enterovirus type as antigen
    corecore