482 research outputs found

    Holographic superfluids as duals of rotating black strings

    Full text link
    We study the breaking of an Abelian symmetry close to the horizon of an uncharged rotating Anti-de Sitter black string in 3+1 dimensions. The boundary theory living on R^2 x S^1 has no rotation, but a magnetic field that is aligned with the axis of the black string. This boundary theory decribes non-rotating (2+1)-dimensional holographic superfluids with non-vanishing superfluid velocity. We study these superfluids in the grand canonical ensemble and show that for sufficiently small angular momentum of the dual black string and sufficiently small superfluid velocity the phase transition is 2nd order, while it becomes 1st order for larger superfluid velocity. Moreover, we observe that the phase transition is always 1st order above a critical value of the angular momentum independent of the choice of the superfluid velocity.Comment: 9 pages including 5 figures: v2: 12 pages including 7 figures; 2 figures added, discussion on free energy added; accepted for publication in JHE

    Pathologies in Asymptotically Lifshitz Spacetimes

    Full text link
    There has been significant interest in the last several years in studying possible gravitational duals, known as Lifshitz spacetimes, to anisotropically scaling field theories by adding matter to distort the asymptotics of an AdS spacetime. We point out that putative ground state for the most heavily studied example of such a spacetime, that with a flat spatial section, suffers from a naked singularity and further point out this singularity is not resolvable by any known stringy effect. We review the reasons one might worry that asymptotically Lifshitz spacetimes are unstable and employ the initial data problem to study the stability of such systems. Rather surprisingly this question, and even the initial value problem itself, for these spacetimes turns out to generically not be well-posed. A generic normalizable state will evolve in such a way to violate Lifshitz asymptotics in finite time. Conversely, enforcing the desired asymptotics at all times puts strong restrictions not just on the metric and fields in the asymptotic region but in the deep interior as well. Generically, even perturbations of the matter field of compact support are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including relationship to Gubser's conjecture and singularity in RG flow solution, plus minor clarification

    Linearized stability analysis of gravastars in noncommutative geometry

    Full text link
    In this work, we find exact gravastar solutions in the context of noncommutative geometry, and explore their physical properties and characteristics. The energy density of these geometries is a smeared and particle-like gravitational source, where the mass is diffused throughout a region of linear dimension (α)\sqrt{(\alpha)} due to the intrinsic uncertainty encoded in the coordinate commutator. These solutions are then matched to an exterior Schwarzschild spacetime. We further explore the dynamical stability of the transition layer of these gravastars, for the specific case of β=M2/α<1.9\beta=M^2/\alpha<1.9, where M is the black hole mass, to linearized spherically symmetric radial perturbations about static equilibrium solutions. It is found that large stability regions exist and, in particular, located sufficiently close to where the event horizon is expected to form.Comment: 6 pages, 3 figure

    Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction

    Get PDF
    We show that a class of Einstein-Maxwell-Dilaton (EMD) theories are related to higher dimensional AdS-Maxwell gravity via a dimensional reduction over compact Einstein spaces combined with continuation in the dimension of the compact space to non-integral values (`generalized dimensional reduction'). This relates (fairly complicated) black hole solutions of EMD theories to simple black hole/brane solutions of AdS-Maxwell gravity and explains their properties. The generalized dimensional reduction is used to infer the holographic dictionary and the hydrodynamic behavior for this class of theories from those of AdS. As a specific example, we analyze the case of a black brane carrying a wave whose universal sector is described by gravity coupled to a Maxwell field and two neutral scalars. At thermal equilibrium and finite chemical potential the two operators dual to the bulk scalar fields acquire expectation values characterizing the breaking of conformal and generalized conformal invariance. We compute holographically the first order transport coefficients (conductivity, shear and bulk viscosity) for this system.Comment: v2, Important additions: (1) discussion of the entropy current, (2) postulated zeta/eta bound is generically violated. Some comments and references added, typos corrected. 50 page

    Higher Dimensional Cylindrical or Kasner Type Electrovacuum Solutions

    Full text link
    We consider a D dimensional Kasner type diagonal spacetime where metric functions depend only on a single coordinate and electromagnetic field shares the symmetries of spacetime. These solutions can describe static cylindrical or cosmological Einstein-Maxwell vacuum spacetimes. We mainly focus on electrovacuum solutions and four different types of solutions are obtained in which one of them has no four dimensional counterpart. We also consider the properties of the general solution corresponding to the exterior field of a charged line mass and discuss its several properties. Although it resembles the same form with four dimensional one, there is a difference on the range of the solutions for fixed signs of the parameters. General magnetic field vacuum solution are also briefly discussed, which reduces to Bonnor-Melvin magnetic universe for a special choice of the parameters. The Kasner forms of the general solution are also presented for the cylindrical or cosmological cases.Comment: 16 pages, Revtex. Text and references are extended, Published versio

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon

    Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum

    Full text link
    Static asymptotically Lifshitz wormholes and black holes in vacuum are shown to exist for a class of Lovelock theories in d=2n+1>7 dimensions, selected by requiring that all but one of their n maximally symmetric vacua are AdS of radius l and degenerate. The wormhole geometry is regular everywhere and connects two Lifshitz spacetimes with a nontrivial geometry at the boundary. The dynamical exponent z is determined by the quotient of the curvature radii of the maximally symmetric vacua according to n(z^2-1)+1=(l/L)^2, where L corresponds to the curvature radius of the nondegenerate vacuum. Light signals are able to connect both asymptotic regions in finite time, and the gravitational field pulls towards a fixed surface located at some arbitrary proper distance to the neck. The asymptotically Lifshitz black hole possesses the same dynamical exponent and a fixed Hawking temperature given by T=z/(2^z pi l). Further analytic solutions, including pure Lifshitz spacetimes with a nontrivial geometry at the spacelike boundary, and wormholes that interpolate between asymptotically Lifshitz spacetimes with different dynamical exponents are also found.Comment: 19 pages, 1 figur
    corecore