61 research outputs found

    Holographic superfluids as duals of rotating black strings

    Full text link
    We study the breaking of an Abelian symmetry close to the horizon of an uncharged rotating Anti-de Sitter black string in 3+1 dimensions. The boundary theory living on R^2 x S^1 has no rotation, but a magnetic field that is aligned with the axis of the black string. This boundary theory decribes non-rotating (2+1)-dimensional holographic superfluids with non-vanishing superfluid velocity. We study these superfluids in the grand canonical ensemble and show that for sufficiently small angular momentum of the dual black string and sufficiently small superfluid velocity the phase transition is 2nd order, while it becomes 1st order for larger superfluid velocity. Moreover, we observe that the phase transition is always 1st order above a critical value of the angular momentum independent of the choice of the superfluid velocity.Comment: 9 pages including 5 figures: v2: 12 pages including 7 figures; 2 figures added, discussion on free energy added; accepted for publication in JHE

    On the existence of topological hairy black holes in SU(N) EYM theory with a negative cosmological constant

    Get PDF
    We investigate the existence of black hole solutions of four dimensional su(N) EYM theory with a negative cosmological constant. Our analysis differs from previous works in that we generalise the field equations to certain non-spherically symmetric spacetimes. We prove the existence of non-trivial solutions for any integer N, with N−1 gauge degrees of freedom. Specifically, we prove two results: existence of solutions for fixed values of the initial parameters and as |Λ|→∞, and existence of solutions for any Λ<0 in some neighbourhood of existing trivial solutions. In both cases we can prove the existence of `nodeless' solutions, i.e. such that all gauge field functions have no zeroes; this fact is of interest as we anticipate that some of them may be stable

    Pathologies in Asymptotically Lifshitz Spacetimes

    Full text link
    There has been significant interest in the last several years in studying possible gravitational duals, known as Lifshitz spacetimes, to anisotropically scaling field theories by adding matter to distort the asymptotics of an AdS spacetime. We point out that putative ground state for the most heavily studied example of such a spacetime, that with a flat spatial section, suffers from a naked singularity and further point out this singularity is not resolvable by any known stringy effect. We review the reasons one might worry that asymptotically Lifshitz spacetimes are unstable and employ the initial data problem to study the stability of such systems. Rather surprisingly this question, and even the initial value problem itself, for these spacetimes turns out to generically not be well-posed. A generic normalizable state will evolve in such a way to violate Lifshitz asymptotics in finite time. Conversely, enforcing the desired asymptotics at all times puts strong restrictions not just on the metric and fields in the asymptotic region but in the deep interior as well. Generically, even perturbations of the matter field of compact support are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including relationship to Gubser's conjecture and singularity in RG flow solution, plus minor clarification

    Linearized stability analysis of gravastars in noncommutative geometry

    Full text link
    In this work, we find exact gravastar solutions in the context of noncommutative geometry, and explore their physical properties and characteristics. The energy density of these geometries is a smeared and particle-like gravitational source, where the mass is diffused throughout a region of linear dimension (α)\sqrt{(\alpha)} due to the intrinsic uncertainty encoded in the coordinate commutator. These solutions are then matched to an exterior Schwarzschild spacetime. We further explore the dynamical stability of the transition layer of these gravastars, for the specific case of β=M2/α<1.9\beta=M^2/\alpha<1.9, where M is the black hole mass, to linearized spherically symmetric radial perturbations about static equilibrium solutions. It is found that large stability regions exist and, in particular, located sufficiently close to where the event horizon is expected to form.Comment: 6 pages, 3 figure

    General Minimal Flavor Violation

    Get PDF
    A model independent study of the minimal flavor violation (MFV) framework is presented, where the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading terms, and nonlinear MFV, where such a truncation is not possible due to large third generation Yukawa couplings. These are then resummed to all orders using non-linear sigma-model techniques familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual U(2) symmetry, the extra CPV in B_d-\bar B_d mixing is bounded by CPV in B_s-\bar B_s mixing. If operators with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is negligible in processes involving only the first two generations. We find large enhancements in the up type sector, both in CPV in D-\bar D mixing and in top flavor violation.Comment: 5 pages and no figure

    Higher Dimensional Cylindrical or Kasner Type Electrovacuum Solutions

    Full text link
    We consider a D dimensional Kasner type diagonal spacetime where metric functions depend only on a single coordinate and electromagnetic field shares the symmetries of spacetime. These solutions can describe static cylindrical or cosmological Einstein-Maxwell vacuum spacetimes. We mainly focus on electrovacuum solutions and four different types of solutions are obtained in which one of them has no four dimensional counterpart. We also consider the properties of the general solution corresponding to the exterior field of a charged line mass and discuss its several properties. Although it resembles the same form with four dimensional one, there is a difference on the range of the solutions for fixed signs of the parameters. General magnetic field vacuum solution are also briefly discussed, which reduces to Bonnor-Melvin magnetic universe for a special choice of the parameters. The Kasner forms of the general solution are also presented for the cylindrical or cosmological cases.Comment: 16 pages, Revtex. Text and references are extended, Published versio

    Classical and semi-classical energy conditions

    Full text link
    The standard energy conditions of classical general relativity are (mostly) linear in the stress-energy tensor, and have clear physical interpretations in terms of geodesic focussing, but suffer the significant drawback that they are often violated by semi-classical quantum effects. In contrast, it is possible to develop non-standard energy conditions that are intrinsically non-linear in the stress-energy tensor, and which exhibit much better well-controlled behaviour when semi-classical quantum effects are introduced, at the cost of a less direct applicability to geodesic focussing. In this article we will first review the standard energy conditions and their various limitations. (Including the connection to the Hawking--Ellis type I, II, III, and IV classification of stress-energy tensors). We shall then turn to the averaged, nonlinear, and semi-classical energy conditions, and see how much can be done once semi-classical quantum effects are included.Comment: V1: 25 pages. Draft chapter, on which the related chapter of the book "Wormholes, Warp Drives and Energy Conditions" (to be published by Springer), will be based. V2: typos fixed. V3: small typo fixe
    corecore