41 research outputs found

    JWST lensed quasar dark matter survey – I. Description and first results

    Full text link
    peer reviewedThe flux ratios of gravitationally lensed quasars provide a powerful probe of the nature of dark matter. Importantly, these ratios are sensitive to small-scale structure, irrespective of the presence of baryons. This sensitivity may allow us to study the halo mass function even below the scales where galaxies form observable stars. For accurate measurements, it is essential that the quasar’s light is emitted from a physical region of the quasar with an angular scale of milliarcseconds or larger; this minimizes microlensing effects by stars within the deflector. The warm dust region of quasars fits this criterion, as it has parsec-size physical scales and dominates the spectral energy distribution of quasars at wavelengths greater than 10 μm. The JWST Mid-Infrared Instrument is adept at detecting redshifted light in this wavelength range, offering both the spatial resolution and sensitivity required for accurate gravitational lensing flux ratio measurements. Here, we introduce our survey designed to measure the warm dust flux ratios of 31 lensed quasars. We discuss the flux-ratio measurement technique and present results for the first target, DES J0405-3308. We find that we can measure the quasar warm dust flux ratios with 3 per cent precision. Our simulations suggest that this precision makes it feasible to detect the presence of 107 M dark matter haloes at cosmological distances. Such haloes are expected to be completely dark in cold dark matter models

    Blending human and artificial intelligence to support Autistic children’s social communication skills

    Get PDF
    This paper examines the educational efficacy of a learning environment in which children diagnosed with Autism Spectrum Conditions (ASC) engage in social interactions with an artificially intelligent (AI) virtual agent and where a human practitioner acts in support of the interactions. A multi-site intervention study in schools across the UK was conducted with 29 children with ASC and learning difficulties, aged 4-14 years old. For reasons related to data completeness and amount of exposure to the AI environment, data for 15 children was included in the analysis. The analysis revealed a significant increase in the proportion of social responses made by ASC children to human practitioners. The number of initiations made to human practitioners and to the virtual agent by the ASC children also increased numerically over the course of the sessions. However, due to large individual differences within the ASC group, this did not reach significance. Although no evidence of transfer to the real-world post-test was shown, anecdotal evidence of classroom transfer was reported. The work presented in this paper offers an important contribution to the growing body of research in the context of AI technology design and use for autism intervention in real school contexts. Specifically, the work highlights key methodological challenges and opportunities in this area by leveraging interdisciplinary insights in a way that (i) bridges between educational interventions and intelligent technology design practices, (ii) considers the design of technology as well as the design of its use (context and procedures) on par with one another, and (iii) includes design contributions from different stakeholders, including children with and without ASC diagnosis, educational practitioners and researchers

    Collection Based Combined Cycle for Earth to Orbit Propulsion

    No full text

    Fine mapping and identification of candidate pulmonary adenoma susceptibility 1 genes using advanced intercross lines

    No full text
    In the present study, we used newly developed F11 generation mouse advanced intercross lines (AIL) to fine map Pas1–3 quantitative trait loci (QTL). The (A/J x C57BL/6) F11 AIL mouse population was created by crossing lung tumor-resistant C57BL/6 mice with lung tumor-susceptible A/J mice. By selectively genotyping 30% of the population, we have confirmed the Pas1 QTL and narrowed it to an interval of 1.0 cM or 1.3 Mb in the vicinity of the Kras2 gene. The Pas2 QTL was detected by both ANOVA and regression analysis but not by MapMaker EXP/QTL software. In addition, an interaction between the Pas1 and Pas2 QTLs was revealed. However, the Pas3 QTL was not confirmed in this study. It was either lost during the development of the AIL or too weak to be detected using AIL. The Pas1 locus is now sufficiently fine-mapped that candidate gene(s) for the Pas1 locus can be characterized by positional cloning. In this study, all 27 of the known or predicted genes located in the Pas1 candidate region were characterized as possible candidate Pas genes. Six genes were selected for additional analyses because of their relevant function in tumorigenesis or allelic changes between A/J and C57BL/6 mice. The Lrmp gene bears amino acid polymorphisms among various mouse strains that are highly correlated with the Pas1 allele status. The Pas1c1 gene (RIKEN Ak016641), encoding an intermediate filament tail domain-containing protein, produces alternatively spliced transcripts across inbred strains of mice, and its splicing pattern cosegregates with the Pas1 allele. The genetic and expression data support these two genes as strong candidates for the Pas1 locus. Of the other four genes (Eca39, RIKEN Ak015530, mHoj-1, and Krag), no functional polymorphisms or differential gene expression were found in Eca39, mHoj-1, and Krag between lung tumor-susceptible and -resistant strains. The Ak015530 carries an amino acid polymorphism, but this polymorphism does not cosegregate with mouse lung tumor susceptibility. Thus, these 4 genes are less likely candidates for the Pas1 locus
    corecore