3,144 research outputs found

    Coordinate systems for differential correction

    Get PDF
    System of state transition partial derivatives for which tracking information normal matrix for lunar orbiter is nearly diagonalize

    A universal formulation for conic trajectories. Basic variables and relationships

    Get PDF
    Truncated trigonometric functions for conic trajectory formulation in space flight application

    Shape oscillations of a charged diamagnetically-levitated droplet

    Full text link
    We investigate the effect of electrical charge on the normal mode frequencies of electrically-charged diamagnetically levitated water droplets with radii 4.5-7.5 mm using diamagnetic levitation. This technique allows us to levitate almost spherical droplets and therefore to directly compare the measured vibrational frequencies of the first seven modes of the charged droplet with theoretical values calculated by Lord Rayleigh, for which we find good agreement

    Probing the hydrogen melting line at high pressures by dynamic compression

    Get PDF
    We investigate the capabilities of dynamic compression by intense heavy ion beams to yield information about the high pressure phases of hydrogen. Employing ab initio simulations and experimental data, a new wide range equation of state for hydrogen is constructed. The results show that the melting line up to its maximum as well as the transition from molecular fluids to fully ionized plasmas can be tested with the beam parameters soon to be available. We demonstrate that x-ray scattering can distinguish between phases and dissociation states

    Gaussian-Charge Polarizable Interaction Potential for Carbon Dioxide

    Full text link
    A number of simple pair interaction potentials of the carbon dioxide molecule are investigated and found to underestimate the magnitude of the second virial coefficient in the temperature interval 220 K to 448 K by up to 20%. Also the third virial coefficient is underestimated by these models. A rigid, polarizable, three-site interaction potential reproduces the experimental second and third virial coefficients to within a few percent. It is based on the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller correction and Gaussian charge densities on the atomic sites with an inducible dipole at the center of mass. The electric quadrupole moment, polarizability and bond distances are set to equal experiment. Density of the fluid at 200 and 800 bars pressure is reproduced to within some percent of observation over the temperature range 250 K to 310 K. The dimer structure is in passable agreement with electronically resolved quantum-mechanical calculations in the literature, as are those of the monohydrated monomer and dimer complexes using the polarizable GCPM water potential. Qualitative agreement with experiment is also obtained, when quantum corrections are included, for the relative stability of the trimer conformations, which is not the case for the pair potentials.Comment: Error in the long-range correction fixed and three-body dispersion introduced. 32 pages (incl. title page), 7 figures, 9 tables, double-space

    QCD Viscosity to Entropy Density Ratio in the Hadronic Phase

    Get PDF
    Shear viscosity (eta) of QCD in the hadronic phase is computed by the coupled Boltzmann equations of pions and nucleons in low temperatures and low baryon number densities. The eta to entropy density ratio eta/s maps out the nuclear gas-liquid phase transition by forming a valley tracing the phase transition line in the temperature-chemical potential plane. When the phase transition turns into a crossover, the eta/s valley gradually disappears. We suspect the general feature for a first-order phase transition is that eta/s has a discontinuity in the bottom of the eta/s valley. The discontinuity coincides with the phase transition line and ends at the critical point. Beyond the critical point, a smooth eta/s valley is seen. However, the valley could disappear further away from the critical point. The eta/s measurements might provide an alternative to identify the critical points.Comment: 16 pages, 4 figures. Minor typos corrected and references adde

    Quantification of Viscosity for Solvents−Heavy Oil/Bitumen Systems in the Presence of Water at High Pressures and Elevated Temperatures

    Get PDF
    In this study, a new and pragmatic methodology has been developed to accurately predict the viscosity for light solvents (i.e., methane, ethane, propane, n-butane, n-pentane, N2, and CO2)–heavy oil/bitumen/water systems as a function of pressure in the temperature range of 287.9–463.4 K. The LV and ALV (L is the oleic phase, V is the vapor phase, and A is the aqueous phase) phase equilibria of the aforementioned systems are calculated using the Peng–Robinson equation of state (PR EOS) with modified alpha functions and binary interaction parameters (BIPs). The six widely used mixing rules for predicting viscosity of solvents−heavy oil/bitumen systems pertaining to vapor–liquid equilibria are compared and evaluated, while the linear mixing rule is used for hydrocarbons−water mixtures. Plus, effective density is for the first time successfully introduced into the volume-based mixing rules. The volume-based power law, weight-based power law, and weight-based Cragoe’s mixing rules are found to well reproduce the viscosity for the aforementioned systems with AARDs of 15.5%, 19.0%, and 32.6%, respectively. Effective density rather than real density of dissolved gas(es) should be used for all of the volume-based mixing rules, while the adjustable parameter in the power law mixing rule has a potential to achieve high generalization if adequate measurements are made available. Although water has a lower diluting ability than other solvents in the same amount of dissolution, it can outperform methane and CO2 in diluting heavy oil/bitumen at high temperatures due to its high solubility. Addition of water can reduce or increase the viscosity of a solvents–heavy oil/bitumen mixture, depending on the ability of solvents and water to dilute heavy oil/bitumen and effects of water on the solvent dissolution. Water molar fraction in feed can exert an effect on the mixture viscosity in LV equilibria through affecting the solvent dissolution but cannot impose an impact on the mixture viscosity at ALV equilibria

    Bulk Viscosity of a Gas of Massless Pions

    Full text link
    In the hadronic phase, the dominant configuration of QCD with two flavors of massless quarks is a gas of massless pions. We calculate the bulk viscosity (zeta) using the Boltzmann equation with the kinetic theory generalized to incorporate the trace anomaly. We find that the dimensionless ratio zeta/s, s being the entropy density, is monotonic increasing below T=120 MeV, where chiral perturbation theory is applicable. This, combined with previous results, shows that zeta/s reaches its maximum near the phase transition temperature Tc, while eta/s, eta being the shear viscosity, reaches its minimum near Tc in QCD with massless quarks.Comment: 12 pages, 1 figure; the version to appear in PR

    Performance of a cryogenic system prototype for the XENON1T Detector

    Full text link
    We have developed an efficient cryogenic system with heat exchange and associated gas purification system, as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 ton of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in parallel, a heat exchange efficiency better than 96% has been measured

    Statistical Mechanics of Membrane Protein Conformation: A Homopolymer Model

    Full text link
    The conformation and the phase diagram of a membrane protein are investigated via grand canonical ensemble approach using a homopolymer model. We discuss the nature and pathway of α\alpha-helix integration into the membrane that results depending upon membrane permeability and polymer adsorptivity. For a membrane with the permeability larger than a critical value, the integration becomes the second order transition that occurs at the same temperature as that of the adsorption transition. For a nonadsorbing membrane, the integration is of the first order due to the aggregation of α\alpha-helices.Comment: RevTeX with 5 postscript figure
    corecore