76 research outputs found

    Prenatal Use of Sildenafil in Fetal Growth Restriction and Its Effect on Neonatal Tissue Oxygenation-A Retrospective Analysis of Hemodynamic Data From Participants of the Dutch STRIDER Trial

    Get PDF
    Objective: Sildenafil is under investigation as a potential agent to improve uteroplacental perfusion in fetal growth restriction (FGR). However, the STRIDER RCT was halted after interim analysis due to futility and higher rates of persistent pulmonary hypertension and mortality in sildenafil-exposed neonates. This hypothesis-generating study within the Dutch STRIDER trial sought to understand what happened to these neonates by studying their regional tissue oxygen saturation (rSO2) within the first 72 h after birth. Methods: Pregnant women with FGR received 25 mg placebo or sildenafil thrice daily within the Dutch STRIDER trial. We retrospectively analyzed the cerebral and renal rSO2 monitored with near-infrared spectroscopy (NIRS) in a subset of neonates admitted to two participating neonatal intensive care units, in which NIRS is part of standard care. Secondarily, blood pressure and heart rate were analyzed to aid interpretation. Differences in oxygenation levels and interaction with time (slope) between placebo- and sildenafil-exposed groups were tested using mixed effects analyses with multiple comparisons tests. Results: Cerebral rSO2 levels were not different between treatment groups (79 vs. 77%; both n = 14) with comparable slopes. Sildenafil-exposed infants (n = 5) showed lower renal rSO2 than placebo-exposed infants (n = 6) during several time intervals on day one and two. At 69-72 h, however, the sildenafil group showed higher renal rSO2 than the placebo group. Initially, diastolic blood pressure was higher and heart rate lower in the sildenafil than the placebo group, which changed during day two. Conclusions: Although limited by sample size, our data suggest that prenatal sildenafil alters renal but not cerebral oxygenation in FGR neonates during the first 72 post-natal hours. The observed changes in renal oxygenation could reflect a vasoconstrictive rebound from sildenafil. Similar changes observed in accompanying vital parameters support this hypothesis

    No neurodevelopmental benefit of cerebral oximetry in the first randomised trial (SafeBoosC II) in preterm infants during the first days of life

    Get PDF
    Aim: Cerebral hypoxia has been associated with neurodevelopmental impairment. We studied whether reducing cerebral hypoxia in extremely preterm infants during the first 72 hours of life affected neurological outcomes at two years of corrected age. Methods: In 2012‐2013, the phase II randomised Safeguarding the Brains of our smallest Children trial compared visible cerebral near‐infrared spectroscopy (NIRS) monitoring in an intervention group and blinded NIRS monitoring in a control group. Cerebral hy oxia was significantly reduced in the intervention group. We followed up 115 survivors from eight European centres at two years of corrected age, by conducting a medical examination and assessing their neurodevelopment with the Bayley Scales of Infant and Toddler Development, Second or Third Edition, and the parental Ages and Stages Questionnaire (ASQ). Results: There were no differences between the intervention (n = 65) and control (n = 50) groups with regard to the mean mental developmental index (89.6 ± 19.5 versus 88.4 ± 14.7, p = 0.77), ASQ score (215 ± 58 versus 213 ± 58, p = 0.88) and the number of children with moderate‐to‐severe neurodevelopmental impairment (10 versus six, p = 0.58). Conclusions: Cerebral NIRS monitoring was not associated with long‐term benefits or harm with regard to neurodevelopmental outcome at two years of corrected age

    Технология извлечения структур знаний с использованием аппарата расширенных семантических сетей

    Get PDF
    В статье рассматривается задача извлечения из текстов естественного языка структур знаний: информационных объектов («именованных сущностей»), их свойств, связей и фактов участия в действиях. Для этих целей разработан инструментарий: язык представления знаний (расширенные семантические сети – РСС) и их обработки (язык преобразования структур – ДЕКЛ). На этой основе созданы технологии, которые обладают следующими особенностями. Из текстов извлекаются не отдельные объекты (именованные сущности), а структуры знаний, представляющие связи объектов и их участие в действиях и событиях. Для извлечения структур знаний разработан уникальный семантико-ориентированный лингвистический процессор (ЛП), осуществляющий глубинный анализ текстов ЕЯ и выявляющий десятки типов объектов вместе с их структурами. Процессор ЛП управляется лингвистическими знаниями, представляющими собой декларативные структуры и обеспечивающие быструю настройку ЛП на предметную область и язык. Основой лингвистических знаний являются правила, обладающие высокой степенью избирательности при выявлении объектов («сущностей»), средствами устранения коллизий при их применении. Это позволяет минимизировать шумы и потери.У статті розглядається задача знайдення у текстах природної мови структур знань: інформаційних об’єктів («іменованих сутностей»), їх якостей зв’язків і фактів участі у діях. Для цих цілей розроблений інструментарій: мова представлення знань (розширені семантичні мережі – РСМ) та їх обробки (мова перетворення структур – ДЕКЛ). На цій основі створені технології, що мають наступні особливості. З тестів виділяються не окремі об’єкти (іменовані сутності), а структури знань, що представляють зв’язки об’єктів та їх участь у діях та подіях. З метою виділення структур знань розроблений винятковий семантико-орієнтований лінгвістичний процесор (ЛП), що здійснює глибинний аналіз текстів ЕЯ та виявляє десятки типів об’єктів разом з їх структурами. Процесор ЛП керується лінгвістичними знаннями, які представляють собою декларативні структури та забезпечують швидке настроювання ЛП на предметну сферу та мову. Основою лінгвістичних знань є правила, що мають високий ступінь вибірковості при виявленні об’єктів («сутностей»), засобами усунення колізій при їхньому використанні. Це дозволяє мінімізувати шуми та втрати.The paper is devoted to the extracting of knowledge structures from the natural language texts, i.e. information objects (“Named Entities”), their features, relationships, and participation in the actions and events. For this purpose, the language used for knowledge representation (extended semantic networks/ESN) and tools for processing (language for structure conversion LSC) are considered. On this base, the new technologies are proposed. These technologies have the following features: extraction from the texts of knowledge structures that represent the links of named entities and their participation in actions and events. For the knowledge extraction the unique semantic-oriented language processor (LP) are designed. Processor LP provides the deep analysis of NL-texts and revealing set of objects together with their structures. Processor LP is controlled by the linguistic knowledge, which are declarative structures (on ESN) and which provides the quick tuning of LP on subject area and language, both Russian and English

    Clinical use of cerebral oximetry in extremely preterm infants is feasible

    Get PDF
    Introduction: The research programme Safeguarding the Brains of our smallest Children (SafeBoosC) aims to test the benefits and harms of cerebral near-infrared spectroscopy (NIRS) oximetry in infants born before 28 weeks of gestation. In a phase II trial, infants will be randomised to visible cerebral NIRS oximetry with pre-specified treatment guidelines compared to standard care with blinded NIRS-monitoring. The primary outcome is duration multiplied with the extent outside the normal range of regional tissue oxygen saturation of haemoglobin (rStO2) of 55 to 85% in percentage hours (burden). This study was a pilot of the Visible ­Oximetry Group. Material and methods: This was an observational study including ten infants. Results: The median gestational age was 26 weeks + three days, and the median start-up time was 133 minutes after delivery. The median recording time was 69.7 hours, mean rStO2 was 64.2 ± 4.5%, median burden of hyper- and hy­poxia was 30.3% hours (range 2.8-112.3). Clinical staff responded to an out of range value 29 times – only once to values above 85%. In comparison, there were 83 periods of more than ten minutes with an rStO2 below 55% and four episodes with an rStO2 above 85%. These periods accounted for 72% of the total hypoxia burden. A total of 18 of the 29 interventions were adjustments of FiO2 which in 13 of the 18 times resulted in an out-of-range SpO2. Two infants suffered second-degree burns from the sensor. Five infants died. In all cases, this was unrelated to NIRS monitoring and treatment. Conclusion: The intervention of early cerebral NIRS monitoring proved feasible, but prolonged periods of hypoxia went untreated. Thus, a revision of the treatment guideline and an alarm system is required

    Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial

    Get PDF
    Objective To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. Design Phase II randomised, single blinded, parallel clinical trial. Setting Eight tertiary neonatal intensive care units in eight European countries. Participants 166 extremely preterm infants born before 28 weeks of gestation: 86 were randomised to cerebral NIRS monitoring and 80 to blinded NIRS monitoring. The only exclusion criterion was a decision not to provide life support. Interventions Monitoring of cerebral oxygenation using NIRS in combination with a dedicated treatment guideline during the first 72 hours of life (experimental) compared with blinded NIRS oxygenation monitoring with standard care (control).Main outcome measures The primary outcome measure was the time spent outside the target range of 55-85% for cerebral oxygenation multiplied by the mean absolute deviation, expressed in %hours (burden of hypoxia and hyperoxia). One hour with an oxygenation of 50% gives 5%hours of hypoxia. Secondary outcomes were all cause mortality at term equivalent age and a brain injury score assessed by cerebral ultrasonography. Randomisation Allocation sequence 1:1 with block sizes 4 and 6 in random order concealed for the investigators. The allocation was stratified for gestational age (26 weeks).Blinding Cerebral oxygenation measurements were blinded in the control group. All outcome assessors were blinded to group allocation. Results The 86 infants randomised to the NIRS group had a median burden of hypoxia and hyperoxia of 36.1%hours (interquartile range 9.2-79.5%hours) compared with 81.3 (38.5-181.3) %hours in the control group, a reduction of 58% (95% confidence interval 35% to 73%, P<0.001). In the experimental group the median burden of hypoxia was 16.6 (interquartile range 5.4-68.1) %hours, compared with 53.6 (17.4-171.3) %hours in the control group (P=0.0012). The median burden of hyperoxia was similar between the groups: 1.2 (interquartile range 0.3-9.6) %hours in the experimental group compared with 1.1 (0.1-23.4) %hours in the control group (P=0.98). We found no statistically significant differences between the two groups at term corrected age. No severe adverse reactions were associated with the device. Conclusions Cerebral oxygenation was stabilised in extremely preterm infants using a dedicated treatment guideline in combination with cerebral NIRS monitoring.Trial registration ClinicalTrial.gov NCT0159031

    A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): study protocol for a randomized controlled trial

    Get PDF
    Background: Every year in Europe about 25,000 infants are born extremely preterm. These infants have a 20% mortality rate, and 25% of survivors have severe long-term cerebral impairment. Preventative measures are key to reduce mortality and morbidity in an extremely preterm population. The primary objective of the SafeBoosC phase II trial is to examine if it is possible to stabilize the cerebral oxygenation of extremely preterm infants during the first 72 hours of life through the application of cerebral near-infrared spectroscopy (NIRS) oximetry and implementation of an clinical treatment guideline based on intervention thresholds of cerebral regional tissue saturation rStO2. Methods/Design: SafeBoosC is a randomized, blinded, multinational, phase II clinical trial. The inclusion criteria are: neonates born more than 12 weeks preterm; decision to conduct full life support; parental informed consent; and possibility to place the cerebral NIRS oximeter within 3 hours after birth. The infants will be randomized into one of two groups. Both groups will have a cerebral oximeter monitoring device placed within three hours of birth. In the experimental group, the cerebral oxygenation reading will supplement the standard treatment using a predefined treatment guideline. In the control group, the cerebral oxygenation reading will not be visible and the infant will be treated according to the local standards. The primary outcome is the multiplication of the duration and magnitude of rStO2 values outside the target ranges of 55% to 85%, that is, the ‘burden of hypoxia and hyperoxia’ expressed in ‘%hours’. To detect a 50% difference between the experimental and control group in %hours, 166 infants in total must be randomized. Secondary outcomes are mortality at term date, cerebral ultrasound score, and interburst intervals on an amplitude-integrated electroencephalogram at 64 hours of life and explorative outcomes include neurodevelopmental outcome at 2 years corrected age, magnetic resonance imaging at term, blood biomarkers at 6 and 64 hours after birth, and adverse events. Discussion: Cerebral oximetry guided interventions have the potential to improve neurodevelopmental outcome in extremely preterm infants. It is a logical first step to test if it is possible to reduce the burden of hypoxia and hyperoxia. Trial registration: ClinicalTrial.gov, NCT0159031

    Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants

    No full text
    OBJECTIVES. A hemodynamically important patent ductus arteriosus is a common problem in the first week of life in the preterm infant. Although patent ductus arteriosus induces alterations in organ perfusion, scarce information is available of the impact of patent ductus arteriosus and its subsequent treatment on the oxygen supply and oxygen extraction of the brain. We investigated the impact of patent ductus arteriosus and its treatment with indomethacin on regional cerebral oxygen saturation and fractional tissue oxygen extraction by using near-infrared spectroscopy. PATIENTS AND METHODS. Twenty infants with patent ductus arteriosus (gestational age: RESULTS. Mean arterial blood pressure and regional cerebral oxygen saturation were significantly lower and fractional tissue oxygen extraction significantly higher compared with the control infants during patent ductus arteriosus (mean arterial blood pressure: 33 +/- 5 vs 38 +/- 6 mm Hg; regional cerebral oxygen saturation: 62% +/- 9% vs 72% +/- 10%; fractional tissue oxygen extraction: 0.34 +/- 0.1 vs 0.25 +/- 0.1, respectively). Regional cerebral oxygen saturation and fractional tissue oxygen extraction were lower and higher, respectively, up to 24 hours after the start of indomethacin but normalized to control values afterward. Indomethacin had no additional negative effect on cerebral oxygenation. CONCLUSIONS. A hemodynamically significant patent ductus arteriosus has a negative effect on cerebral oxygenation in the premature infant. Subsequent and adequate treatment of a patent ductus arteriosus may prevent diminished cerebral perfusion and subsequent decreased oxygen delivery, which reduces the change of damage to the vulnerable immature brain
    corecore