3 research outputs found

    The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription.

    Get PDF
    The herpesvirus cytomegalovirus can cause severe morbidity in immunosuppressed people and poses a much greater global problem in the context of congenital infections than the Zika virus. To establish infection, cytomegalovirus needs to modulate the antiviral immune response of its host. One of the first lines of defense against viral infections is the type I interferon response which is activated by cellular sensors called pattern recognition receptors. These receptors sense viral entry and rapidly induce the transcription of type I interferons, which are instrumental for the induction of an antiviral state in infected and surrounding cells. We have identified the first viral protein encoded by murine cytomegalovirus, the M35 protein, that counteracts type I interferon transcription downstream of multiple pattern recognition receptors. We found that this viral countermeasure occurs shortly after viral entry into the host cell, as M35 is delivered with the viral particle. M35 then localizes to the nucleus where it modulates NF-κB-mediated transcription. In vivo, murine cytomegalovirus deficient of the M35 protein replicates to lower levels in spleen and liver and cannot establish a productive infection in the salivary glands, which is a key site of viral transmission, highlighting the important role of M35 for the establishment of infection. Our study provides novel insights into the complex interaction between cytomegalovirus and the innate immune response of its host

    The viral chemokine MCK-2 of murine cytomegalovirus promotes infection as part of a gH/gL/MCK-2 complex.

    Get PDF
    Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex. Here, we show that the MCMV CC chemokine MCK-2 forms a complex with the glycoprotein gH, a complex which is incorporated into the virion. We could additionally show that mutants lacking both, gO and MCK-2 are not able to produce infectious virus. Trans-complementation of these double mutants with either gO or MCK-2 showed that both proteins can promote infection of host cells, although through different entry pathways. MCK-2 has been extensively studied in vivo by others. It has been shown to be involved in attracting cells for virus dissemination and in regulating antiviral host responses. We now show that MCK-2, by forming a complex with gH, strongly promotes infection of macrophages in vitro and in vivo. Thus, MCK-2 may play a dual role in MCMV infection, as a chemokine regulating the host response and attracting specific target cells and as part of a glycoprotein complex promoting entry into cells crucial for virus dissemination
    corecore