1,040 research outputs found

    Electronic Raman scattering in Tl2Ba2CuO6+x: symmetry of the order parameter, oxygen doping effects, and normal state scattering

    Full text link
    Single crystals of the optimally doped, moderately and strongly overdoped high temperature superconductor Tl2Ba2CuO6+x (Tl-2201) with Tc=80, 56 and 30K, respectively, have been investigated by polarized Raman scattering. By taking the peak position of the B_1g component of electronic Raman scattering as 2Delta_0 we found that the reduced gap value (2Delta_0/k_BT_c) strongly decreases with increasing doping. The behavior of the low frequency scattering for the B_1g and B_2g scattering components is similar for optimally doped and overdoped crystals and can be described by a w^3 - and w -law, respectively, which is consistent with a d-wave symmetry of the order parameter. In contrast to the optimally doped Tl-2201 in both, moderately and strongly overdoped Tl-2201, the relative (compared to the B_1g) intensity of the A_1g scattering component is suppressed. We suggest that the van Hove singularity is responsible for the observed changes of Raman intensity and reduced gap value with doping. Electronic Raman scattering in the normal state is discussed in the context of the scattering from impurities and compared to the existing infrared data. The scattering rate evaluated from the Raman measurements is smaller for the overdoped samples, compared to the moderately overdoped samples.Comment: 7 pages, 7 figure

    TiOCl, an orbital-ordered system?

    Full text link
    We present first principles density functional calculations and downfolding studies of the electronic and magnetic properties of the layered quantum spin system TiOCl. We discuss explicitely the nature of the exchange pathes and attempt to clarify the concept of orbital ordering in this material. An analysis of the electronic structure of slightly distorted structures according to the phononic modes allowed in this material suggests that this system is subject to large orbital fluctuations driven by the electron-phonon coupling. Based on these results, we propose a microscopic explanation of the behavior of TiOCl near the phase transition to a spin-gapped system.Comment: Some figures are compressed, for higher quality please contact the author

    Low temperature mixed spin state of Co3+ in LaCoO3 evidenced from Jahn-Teller lattice distortions

    Full text link
    One- and multi-phonon excitations of the single crystalline LaCoO3 were studied using Raman spectroscopy in the temperature region of 5 K - 300 K. First-order Raman spectra show a larger number of phonon modes than allowed for the rhombohedral structure. Additional phonon modes are interpreted in terms of activated modes due to lattice distortions, arising from the Jahn-Teller (JT) activity of the intermediate-spin (IS) state of Co3+ ions. In particular, the 608-cm-1 stretching-type mode shows anomalous behavior in peak energy and scattering intensity as a function of temperature. The anomalous temperature dependence of the second-order phonon excitations spectra is in accordance with the Franck-Condon mechanism that is characteristic for a JT orbital order.Comment: 11 pages, 9 figures, to be published in J. Low. Temp. Physic

    Dynamical lattice instability versus spin liquid state in a frustrated spin chain system

    Full text link
    The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.Comment: 5 pages, 6 figure

    Electronic Raman scattering of Tl-2223 and the symmetry of the supercon- ducting gap

    Full text link
    Single crystalline Tl2Ba2Ca2Cu3O10 was studied using electronic Raman scattering. The renormalization of the scattering continuum was investigated as a function of the scattering geometry to determine the superconducting energy gap 2Delta(k). The A1g- and B2g-symmetry component show a linear frequency behaviour of the scattering intensity with a peak related to the energy gap, while the B1g-symmetry component shows a characteristic behaviour at higher frequencies. The observed frequency dependencies are consistent with a dx^2-y^2-wave symmetry of the gap and yield a ratio of 2Delta/k_BT_c=7.4. With the polarization of the scattered and incident light either parallel or perpendicular to the CuO2-planes a strong anisotropy due to the layered structure was detected, which indicates an almost 2 dimensional behaviour of this system.Comment: 2 pages, Postscript-file including 2 figures. Accepted for publication in the Proceedings of the M^2SHTSC IV Conference, Grenoble (France), 5-9 July 1994. Proceedings to be published in Physica C. Contact address: [email protected]

    Dynamical Dzyaloshinsky-Moriya interaction in KCuF3: Raman evidence for an antiferrodistortive lattice instability

    Full text link
    In the orbitally ordered, quasi-one dimensional Heisenberg antiferromagnet KCuF3 the low-energy Eg and B1g phonon modes show an anomalous softening (25% and 13%) between room temperature and the characteristic temperature T_S = 50 K. In this temperature range a freezing-in of F ion dynamic displacements is proposed to occur. In addition, the Eg mode at about 260 cm-1 clearly splits below T_S. The width of the phonon lines above T_S follows an activated behavior with an activation energy of about 50 K. Our observations clearly evidence a reduction of the structural symmetry below T_S and indicate a strong coupling of lattice and spin fluctuations for T>T_S.Comment: 7 pages, 9 figure

    Optical phonons, spin correlations, and spin-phonon coupling in the frustrated pyrochlore magnets CdCr2O4 and ZnCr2O4

    Get PDF
    We report on infrared, Raman, magnetic susceptibility, and specific heat measurements on CdCr2O4 and ZnCr2O4 single crystals. We estimate the nearest-neighbor and next-nearest neighbor exchange constants from the magnetic susceptibility and extract the spin-spin correlation functions obtained from the magnetic susceptibility and the magnetic contribution to the specific heat. By comparing with the frequency shift of the infrared optical phonons above TN , we derive estimates for the spin-phonon coupling constants in these systems. The observation of phonon modes which are both Raman and infrared active suggest the loss of inversion symmetry below the Neel temperature in CdCr2O4 in agreement with theoretical predictions by Chern and coworkers [Phys. Rev. B 74, 060405 (2006)]. In ZnCr2O4 several new modes appear below TN, but no phonon modes could be detected which are both Raman and infrared active indicating the conservation of inversion symmetry in the low temperature phase.Comment: 11 pages, 13 figure

    Longitudinal magnon in the tetrahedral spin system Cu2Te2O5Br2 near quantum criticality

    Full text link
    We present a comprehensive study of the coupled tetrahedra-compound Cu2Te2O5Br2 by theory and experiments in external magnetic fields. We report the observation of a longitudinal magnon in Raman scattering in the ordered state close to quantum criticality. We show that the excited tetrahedral-singlet sets the energy scale for the magnetic ordering temperature T_N. This energy is determined experimentally. The ordering temperature T_N has an inverse-log dependence on the coupling parameters near quantum criticality

    Collective Singlet Excitations and Evolution of Raman Spectral Weights in the 2D Spin Dimer Compound SrCu2(BO3)2

    Full text link
    We present a Raman light scattering study of the two-dimensional quantum spin system SrCu2(BO3)2 and show that the magnetic excitation spectrum has a rich structure, including several well-defined bound state modes at low temperature, and a scattering continuum and quasielastic light scattering contributions at high temperature. The key to the understanding of the unique features of SrCu2(BO3)2 is the presence of strong interactions between well-localized triplet excitations in the network of orthogonal spin dimers realized in this compound. Based on our analysis of the Heisenberg model relevant for this material, we argue that the collective excitations involving two and three-particle singlet bound states have large binding energies and are observed as well-defined peaks in the Raman spectrum.Comment: 5 pages, 2 figures. Revised version, to appear in Phys. Rev. Lett. (2000

    Enhanced quasiparticle dynamics of quantum well states: the giant Rashba system BiTeI and topological insulators

    Full text link
    In the giant Rashba semiconductor BiTeI electronic surface scattering with Lorentzian linewidth is observed that shows a strong dependence on surface termination and surface potential shifts. A comparison with the topological insulator Bi2Se3 evidences that surface confined quantum well states are the origin of these processes. We notice an enhanced quasiparticle dynamics of these states with scattering rates that are comparable to polaronic systems in the collision dominated regime. The Eg symmetry of the Lorentzian scattering contribution is different from the chiral (RL) symmetry of the corresponding signal in the topological insulator although both systems have spin-split surface states.Comment: 6 pages, 5 figure
    • …
    corecore