2,142 research outputs found

    High accuracy measure of atomic polarizability in an optical lattice clock

    Full text link
    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (such as blackbody radiation) as the differential static polarizability of the ground and excited clock levels: 36.2612(7) kHz (kV/cm)^{-2}. The clock's fractional uncertainty due to room temperature blackbody radiation is reduced an order of magnitude to 3 \times 10^{-17}.Comment: 5 pages, 3 figures, 2 table

    Modelling photometric reverberation data -- a disk-like broad-line region and a potentially larger black hole mass for 3C120

    Full text link
    We consider photometric reverberation mapping, where the nuclear continuum variations are monitored via a broad-band filter and the echo of emission line clouds of the broad line region (BLR) is measured with a suitable narrow-band (NB) filter. We investigate how an incomplete emission-line coverage by the NB filter influences the BLR size determination. This includes two basic cases: 1) a symmetric cut of the blue and red part of the line wings, and 2) the filter positioned asymmetrically to the line centre so that essentially a complete half of the emission line is contained in the NB filter. Under the assumption that the BLR size is dominated by circular Keplerian orbits, we find that symmetric cutting of line wings may lead to overestimating the BLR size by less than 5%. The case of asymmetric half-line coverage, similar as for our data of the Seyfert 1 galaxy 3C120, yields the BLR size with a bias of less than 1%. Our results suggest that any BLR size bias due to narrow-band line cut in photometric reverberation mapping is small and in most cases negligible. We used well sampled photometric reverberation mapping light curves with sharp variation features in both the continuum and the Hbeta light curves to determine the geometry type of the Hbeta BLR for 3C120. Modelling of the light curve, under the assumption that the BLR is essentially virialised, argues against a spherical geometry and favours a nearly face-on disk-like geometry with inclination i = 10 +/- 4 deg and extension from 22 to 28 light days. The low inclination may lead to a larger black hole mass than the derived when using the average geometry scaling factor f=5.5. We discuss deviations of Seyfert 1 galaxies from the M_BH - sigma relation.Comment: 9 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/ccm

    Full text link
    Recently there has been tremendous increase in the number of identified extra-solar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds like water. Here we present shock compression data for water with unprecedented accuracy that shows water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate this water model be used as the standard for modeling Neptune, Uranus, and "hot Neptune" exoplanets, and should improve our understanding of these types of planets.Comment: Accepted to Phys. Rev. Lett.; supplementary material attached including 2 figures and 2 tables; to view attachments, please download and extract the gzipped tar source file listed under "Other formats

    An atomic clock with 101810^{-18} instability

    Full text link
    Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capability of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in 1018\bm{10^{18}}. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6×1018\bm{1.6\times 10^{-18}} after only 7\bm{7} hours of averaging

    The paradox of tenant empowerment: regulatory and liberatory possibilities

    Get PDF
    Tenant empowerment has traditionally been regarded as a means of realising democratic ideals: a quantitative increase in influence and control, which thereby enables "subjects" to acquire the fundamental properties of "citizens". By contrast governmentality, as derived from the work of Michel Foucault, offers a more critical appraisal of the concept of empowerment by highlighting how it is itself a mode of subjection and a means of regulating human conduct towards particular ends. Drawing on particular data about how housing governance has changed in Glasgow following its 2003 stock transfer, this paper adopts the insights of governmentality to illustrate how the political ambition of "community ownership" has been realized through the mobilization and shaping of active tenant involvement in the local decision making process. In addition, it also traces the tensions and conflict inherent in the reconfiguration of power relations post-transfer for "subjects" do not necessarily conform to the plans of those that seek to govern them

    Hyper-Ramsey Spectroscopy of Optical Clock Transitions

    Full text link
    We present non-standard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties of Ramsey fringes can be radically suppressed (by 2-4 orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case these frequency shifts can be suppressed considerably below a fractional level of 10^{-17}. Moreover, our approach opens the door for the high-precision optical clocks based on direct frequency comb spectroscopy.Comment: 5 pages, 4 figure

    Sub-femtosecond absolute timing precision with a 10 GHz hybrid photonic-microwave oscillator

    Full text link
    We present an optical-electronic approach to generating microwave signals with high spectral purity. By circumventing shot noise and operating near fundamental thermal limits, we demonstrate 10 GHz signals with an absolute timing jitter for a single hybrid oscillator of 420 attoseconds (1Hz - 5 GHz)

    Deep far infrared ISOPHOT survey in "Selected Area 57", I. Observations and source counts

    Get PDF
    We present here the results of a deep survey in a 0.4 sq.deg. blank field in Selected Area 57 conducted with the ISOPHOT instrument aboard ESAs Infrared Space Observatory (ISO) at both 60 um and 90 um. The resulting sky maps have a spatial resolution of 15 x 23 sq.arcsec. per pixel which is much higher than the 90 x 90 sq.arcsec. pixels of the IRAS All Sky Survey. We describe the main instrumental effects encountered in our data, outline our data reduction and analysis scheme and present astrometry and photometry of the detected point sources. With a formal signal to noise ratio of 6.75 we have source detection limits of 90 mJy at 60 um and 50 mJy at 90 um. To these limits we find cumulated number densities of 5+-3.5 per sq.deg. at 60 um and 14.8+-5.0 per sq.deg.at 90 um. These number densities of sources are found to be lower than previously reported results from ISO but the data do not allow us to discriminate between no-evolution scenarios and various evolutionary models.Comment: 15 pages, 11 figures, accepted by Astronomy & Astrophysic
    corecore