8 research outputs found

    the significant effect of size and concentrations of iron oxide nanoparticles on magnetic resonance imaging contrast enhancement

    Get PDF
    In this study, iron oxide (γ-Fe2O3) nanoparticles (IONs) were successfully synthesized using sol-gel method, and characterized by XRD and VSM. The potential application of the differently sized IONs (22 nm and 30 nm) as magnetic resonance imaging (MRI) contrast agents was investigated. The relaxation time (T2) of the IONs was measured at room temperature and concentration range of 9–84 µg/ml using fast spin echo sequence with six echoes. The size was found to affect the contrast enhancement of the MRI image, with the T2 for 22 nm sized γ-Fe2O3 nanoparticles exhibiting a shorter dephasing compared to the 30 nm sized γ-Fe2O3 nanoparticles. The T2 relaxivity also decreased with increasing concentration (9–84 µg/ml) of the γ-Fe2O3 nanoparticles. Based on the T2-weighted analysis, a better signal (i.e. brighter image) was achieved for the 30 nm sized γ-Fe2O3 nanoparticles. Thus, the use of IONs to enhance MR image contrast is dependent on the nanoparticle size and concentration of the IONs. In general, the results indicate that the synthesized γ-Fe2O3 nanoparticles are promising materials for use as MRI contrast agents. Keywords: Magnetic resonance imaging, Iron oxides nanoparticles, T2 relaxivity, XRD, VS

    Magnétisme local du fer dans les superréseaux Fe/Ir(100)

    No full text
    Les propriétés magnétiques du Fer dans les superréseaux Fe / Ir (100) sont étudiées par spectrométrie Mössbauer avec 57Fe. Les échantillons, préparés par épitaxie par jet moléculaire, ont un nombre de monocouches de fer ( 57Fe et/ou 56Fe) variant de 3 à 8 et ce pour des épaisseurs en iridium comprises entre 2 et 30Å. Pour la série à 4 plans où le fer est de structure tétragonale centrée (TC), on observe l'apparition d'un moment magnétique significatif dans les couches centrales de fer au dessus d'un seuil de volume critique, alors que le fer en contact avec l'iridium reste faiblement magnétique. Pour les épaisseurs de fer supérieures à 4 plans, la transition de phase TC - CC contrainte produit de nouveaux sites magnétiques. Une disymétrie marquée entre l'interface Ir/Fe inférieure et l'interface Fe/Ir supérieure, le long de la direction de croissance, est mise en évidence. Enfin, les effets de relaxation magnétique et le régime d'onde de spin, observés respectivement pour les phases TC et CC contrainte, suggèrent une faible corrélation magnétique de couche à couche

    Heating efficiency of Gd- and Co-doped γ-Fe2O3 nanoparticles measured by AC magnetometer for magnetic-mediated hyperthermia

    No full text
    Most research groups, including us, utilize calorimetric methods to determine the heat dissipation by magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF). Herein, we report the heating efficiencies of γ-Fe2O3 and doped γ-Fe2O3 NPs using AC magnetometry, which allows us to directly calculate the AC hysteresis loop area from which the heating abilities can be deduced. First, all NPs were prepared and thoroughly characterized both structurally (XRD, Rietveld, and TEM) and magnetically (DC and AC magnetization measurements). Structural analysis indicated the phase purity (γ-Fe2O3) and crystallite sizes (∼10 nm) of the as-prepared γ-Fe2O3 NPs. Both DC and AC measurements indicated the superparamagnetic behavior for γ-Fe2O3 and Gd-doped γ-Fe2O3(Gd-5%) NPs, while Co-doped γ-Fe2O3(Co-5%) NPs exhibited ferrimagnetic nature. The heating abilities and specific absorption rate (SAR) values were then analyzed at frequency, f = 132 kHz and several AC field amplitudes (µ0HAC) ranging from 0 to 88 mT. From AC magnetometry calculations, the SAR values were found to be 20 W/g and 17 W/g for γ-Fe2O3 and γ-Fe2O3(Gd-5%) NPs, respectively, while that of γ-Fe2O3(Co-5%) NPs reached SAR of 120 W/g, almost 6 times higher. This high heating efficiency of γ-Fe2O3(Co-5%) sample is attributed to their higher effective anisotropy and saturation magnetization where the heat release is mainly dominated by Neel relaxation. Finally, a viability assay against metastatic breast cancer cells was conducted, indicating the biocompatibility and low toxicity of the as-synthesized γ-Fe2O3 and doped γ-Fe2O3 NPs. These results strongly suggest the promising utilization of γ-Fe2O3 NPs, particularly Co-doped, as a potential candidate for magnetic-mediated hyperthermia

    Viewing the Emphasis on State-of-the-Art Magnetic Nanoparticles: Synthesis, Physical Properties, and Applications in Cancer Theranostics

    No full text
    corecore