116 research outputs found

    Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model

    Get PDF
    The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.Comment: 4 pages, 2 figures, published in "Earth, Planets and Space" (EPS), the paper with full resolution images is http://theo.phys.sci.hiroshima-u.ac.jp/~ryo/papers/shock_rest.pd

    GRBs from unstable Poynting dominated outflows

    Get PDF
    Poynting flux driven outflows from magnetized rotators are a plausible explanation for gamma-ray burst engines. We suggest a new possibility for how such outflows might transfer energy into radiating particles. We argue that the Poynting flux drives non-linearly unstable large amplitude electromagnetic waves (LAEMW) which ``break'' at radii rt1014r_t \sim 10^{14} cm where the MHD approximation becomes inapplicable. In the ``foaming'' (relativisticly reconnecting) regions formed during the wave breaks the random electric fields stochastically accelerate particles to ultrarelativistic energies which then radiate in turbulent electromagnetic fields. The typical energy of the emitted photons is a fraction of the fundamental Compton energy ϵfc/re \epsilon \sim f \hbar c/r_e with f103f \sim 10^{-3} plus additional boosting due to the bulk motion of the medium. The emission properties are similar to synchrotron radiation, with a typical cooling time 104\sim 10^{-4} sec. During the wave break, the plasma is also bulk accelerated in the outward radial direction and at larger radii can produce afterglows due to the interactions with external medium. The near equipartition fields required by afterglow models maybe due to magnetic field regeneration in the outflowing plasma (similarly to the field generation by LAEMW of laser-plasma interactions) and mixing with the upstream plasma.Comment: 15 pages, 1 figur

    Equilibration processes in the Warm-Hot Intergalactic Medium

    Full text link
    The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40-50 % to the baryonic budget at the present evolution stage of the universe. The observed large scale structure is likely to be due to gravitational growth of density fluctuations in the post-inflation era. The evolving cosmic web is governed by non-linear gravitational growth of the initially weak density fluctuations in the dark energy dominated cosmology. Non-linear structure formation, accretion and merging processes, star forming and AGN activity produce gas shocks in the WHIM. Shock waves are converting a fraction of the gravitation power to thermal and non-thermal emission of baryonic/leptonic matter. They provide the most likely way to power the luminous matter in the WHIM. The plasma shocks in the WHIM are expected to be collisionless. Collisionless shocks produce a highly non-equilibrium state with anisotropic temperatures and a large differences in ion and electron temperatures. We discuss the ion and electron heating by the collisionless shocks and then review the plasma processes responsible for the Coulomb equilibration and collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence produced by the strong collisionless shocks could provide a sizeable non-thermal contribution to the observed Doppler parameter of the UV line spectra of the WHIM.Comment: 13 pages, 4 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 8; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Non adiabatic electron behavior through a supercritical perpendicular collisionless shock: Impact of the shock front turbulence

    No full text
    International audienceAdiabatic and nonadiabatic electrons transmitted through a supercritical perpendicular shock wave are analyzed with the help of test particle simulations based on field components issued from 2 − D full-particle simulation. A previous analysis (Savoini et al., 2005) based on 1 − D shock profile, including mainly a ramp (no apparent foot) and defined at a fixed time, has identified three distinct electron populations: adiabatic, overadiabatic, and underadiabatic, respectively, identified by μds/μus ≈ 1, >1 and <1, where μus and μds are the magnetic momenta in the upstream and downstream regions. Presently, this study is extended by investigating the impact of the time evolution of 2 − D shock front dynamics on these three populations. Analysis of individual time particle trajectories is performed and completed by statistics based on the use of different upstream velocity distributions (spherical shell of radius vshell and a Maxwellian with thermal velocity vthe). In all statistics, the three electron populations are clearly recovered. Two types of shock front nonstationarity are analyzed. First, the impact of the nonstationarity along the shock normal (due to the front self-reformation only) strongly depends on the values of vshell or vthe. For low values, the percentages of adiabatic and overadiabatic electrons are almost comparable but become anticorrelated under the filtering impact of the self-reformation; the percentage of the underadiabatic population remains almost unchanged. In contrast, for large values, this impact becomes negligible and the adiabatic population alone becomes dominant. Second, when 2 − D nonstationarity effects along the shock front (moving rippling) are fully included, all three populations are strongly diffused, leading to a larger heating; the overadiabatic population becomes largely dominant (and even larger than the adiabatic one) and mainly contributes to the energy spectrum

    Les troubles bipolaires (prise en charge à l'officine)

    No full text
    BORDEAUX2-BU Santé (330632101) / SudocSudocFranceF
    corecore