193 research outputs found

    Spectroscopic properties of a two-dimensional time-dependent Cepheid model I. Description and validation of the model

    Full text link
    Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff=5600T_\mathrm{eff}= 5600 K, logg=2.0\log g=2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The mean Doppler shift is non-zero and negative, -1 km/s, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations

    Spectroscopic properties of a two-dimensional time-dependent Cepheid model II. Determination of stellar parameters and abundances

    Full text link
    Standard spectroscopic analyses of variable stars are based on hydrostatic one-dimensional model atmospheres. This quasi-static approach has theoretically not been validated. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature TeffT_\mathrm{eff}, surface gravity logg\log \,g, microturbulent velocity ξt\xi_\mathrm{t}, and a generic metal abundance logA\log\,A -- here taken as iron. We calculate a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity encountered during the evolution of a two-dimensional time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We perform 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model. For the four-parametric case, the stellar parameters are typically underestimated exhibiting a bias in the iron abundance of \approx-0.2\,\mbox{dex}. To avoid biases of this kind it is favourable to restrict the spectroscopic analysis to photometric phases ϕph0.30.65\phi_\mathrm{ph}\approx0.3\ldots 0.65 using additional information to fix effective temperature and surface gravity. Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular phases of their pulsations. We identified convective inhomogeneities as the main driver behind potential biases. For obtaining a complete view on the effects when determining stellar parameters with 1D models, multi-dimensional Cepheid atmosphere models are necessary for variables of longer period than investigated here.Comment: accepted for publication in Astronomy & Astrophysic

    Discovery of blue companions to two southern Cepheids: WW Car and FN Vel

    Get PDF
    A large number of high-dispersion spectra of classical Cepheids were obtained in the region of the CaII H+K spectral lines. The analysis of these spectra allowed us to detect the presence of a strong Balmer line, Hϵ\epsilon, for several Cepheids, interpreted as the signature of a blue companion: the presence of a sufficiently bright blue companion to the Cepheid results in a discernible strengthening of the CaII H + Hepsilon line relative to the CaII K line. We investigated 103 Cepheids, including those with known hot companions (B5-B6 main-sequence stars) in order to test the method. We could confirm the presence of a companion to WW Car and FN Vel (the existence of the former was only suspected before) and we found that these companions are blue hot stars. The method remains efficient when the orbital velocity changes in a binary system cannot be revealed and other methods of binarity detection are not efficient.Comment: 6 pages, 5 figures, 4 tables, published on MNRAS in March 201

    Classical Cepheids, what else?

    Full text link
    We present new and independent estimates of the distances to the Magellanic Clouds (MCs) using near-infrared (NIR) and optical--NIR period--Wesenheit (PW) relations. The slopes of the PW relations are, within the dispersion, linear over the entire period range and independent of metal content. The absolute zero points were fixed using Galactic Cepheids with distances based on the infrared surface-brightness method. The true distance modulus we found for the Large Magellanic Cloud---(mM)0=18.48±0.01±0.10(m-M)_0 = 18.48 \pm 0.01 \pm 0.10 mag---and the Small Magellanic Cloud---(mM)0=18.94±0.01±0.10(m-M)_0 = 18.94 \pm 0.01 \pm 0.10 mag---agree quite well with similar distance determinations based on robust distance indicators. We also briefly discuss the evolutionary and pulsation properties of MC Cepheids

    Galactic abundance gradients from Cepheids : On the iron abundance gradient around 10-12 kpc

    Full text link
    Context: Classical Cepheids can be adopted to trace the chemical evolution of the Galactic disk since their distances can be estimated with very high accuracy. Aims: Homogeneous iron abundance measurements for 33 Galactic Cepheids located in the outer disk together with accurate distance determinations based on near-infrared photometry are adopted to constrain the Galactic iron gradient beyond 10 kpc. Methods: Iron abundances were determined using high resolution Cepheid spectra collected with three different observational instruments: ESPaDOnS@CFHT, Narval@TBL and [email protected] ESO/MPG telescope. Cepheid distances were estimated using near-infrared (J,H,K-band) period-luminosity relations and data from SAAO and the 2MASS catalog. Results: The least squares solution over the entire data set indicates that the iron gradient in the Galactic disk presents a slope of -0.052+/-0.003 dex/kpc in the 5-17 kpc range. However, the change of the iron abundance across the disk seems to be better described by a linear regime inside the solar circle and a flattening of the gradient toward the outer disk (beyond 10 kpc). In the latter region the iron gradient presents a shallower slope, i.e. -0.012+/-0.014 dex/kpc. In the outer disk (10-12 kpc) we also found that Cepheids present an increase in the spread in iron abundance. Current evidence indicates that the spread in metallicity depends on the Galactocentric longitude. Finally, current data do not support the hypothesis of a discontinuity in the iron gradient at Galactocentric distances of 10-12 kpc. Conclusions: The occurrence of a spread in iron abundance as a function of the Galactocentric longitude indicates that linear radial gradients should be cautiously treated to constrain the chemical evolution across the disk.Comment: 5 tables, 8 figures, Accepted in A&

    Formation des ions bromate dans une colonne à bulles: Effets du peroxyde d'hydrogène lors de l'ozonation

    Get PDF
    L'utilisation de l'ozone, aujourd'hui très répandue dans les filières de potabilisation, n'est pas sans effet secondaire. De nombreux sous-produits peuvent se former comme notamment les ions bromates, sous produits finaux d'oxydation des bromures contenus dans les eaux. Malheureusement, le mécanisme de production de cette espèce est complexe et dépend de nombreux paramètres difficiles à appréhender.Sur une installation pilote de type colonne à bulles fonctionnant à contre-courant, nous avons étudié l'influence de différents paramètres, comme le pH, le temps de contact, la dose d'ozone et la dose de peroxyde d'hydrogène, sur la formation des bromates et la dégradation des pesticides, représentée par l'atrazine.Les résultats de la littérature ont été confirmés lors de l'emploi unique de l'ozone. La formation des ions bromate est influencée par la présence du peroxyde d'hydrogène. Cet oxydant intervient de manière non négligeable sur la consommation des entités intermédiaires. Le couple HOBr/OBr- peut être oxydé par l'ozone moléculaire et le radical OH° mais peut également être réduit par l'ozone et par le peroxyde sous sa forme acide ou sa base conjuguée. En ce qui concerne la dégradation des pesticides, l'utilisation de peroxyde d'hydrogène couplé à l'ozone favorise l'oxydation de la molécule d'atrazine grâce à la présence plus importante de radicaux hydroxyles.Une pollution accidentelle en pesticides pourra être traitée par l'ajout ponctuel de peroxyde d'hydrogène avec une augmentation de pH, la formation des bromates sera, dans ce cas, faible. La désinfection sera alors assurée par l'étape de chloration.In drinking water treatment plants, ozonation is often used to disinfect, to remove micropollutants and to improve water taste and odour. Ozonation increases organic matter biodegradability before filtration through granular active carbon and reduces the concentration of haloform precursors that react in the final chlorination step. However, by-products that could be detrimental to human health could be formed. For example, bromates, which are classified as carcinogenic compounds by the I.A.R.C, are produced during the ozonation of bromide-containing water. The mechanism of bromate formation is complex, due to the participation of molecular ozone and radical (hydroxyl and carbonate) reactions. The optimisation of the process should allow for a good disinfection and a reduction in the levels of micropollutants, together with low by-product formation.Using a pilot-scale counter-current bubble column, we have measured the bromate concentration in relation to pesticide removal. Water spiked with bromide and atrazine was stored in a completely stirred-tank (2 m3) before being pumped to the top of the column. The inlet gaseous ozone was measured by an analyser using UV detection, the outlet gaseous ozone was monitored by the potassium iodide method, and the dissolved ozone concentration was determined by the indigo trisulfonate method. Bromides and bromates were quantified by ion chromatography with a conductimetric detector, with a sodium carbonate solution as the eluant. Samples for bromate analysis were pretreated by OnGuard-Ag and OnGuard-H cartridges in series before injection. Atrazine degradation was measured by high performance liquid chromatography with a diode array detector, with a CH3CN/H2O mixture as the eluant. The linearisation of atrazine removal allowed us to calculate the hydroxyl radical concentration in a series of a completely-stirred tank reactors and in a plug-flow reactor.We have studied the influence of several parameters on bromate formation, including pH, bromide concentration and hydrogen peroxide concentration. As bromate production is a function of bromide concentration, we have chosen to calculate the ratio between the real bromate concentration and the theoretical bromate concentration if all bromide were oxidised to bromate. The pH affects bromate formation: an increase in pH in the absence of hydrogen peroxide increases bromate production, but when this oxidant is applied bromate production decreases when the pH increases. If reaction progress is represented as a function of [O3]*TC, we note that the presence of hydrogen peroxide increases bromate formation because of the increase in hydroxyl radical concentration, which favours radical formation. Nevertheless, if we represent reaction progress as a function of [OH∘]*TC, hydrogen peroxide seems to be an initiator and a scavenger in the mechanism of bromate formation. If we calculate the rates of all the oxidation and reduction reactions for HOBr/OBr- species, the contribution to the reduction of HOBr/OBr- species by peroxide is very important in comparison to the oxidation reactions, which inhibits bromate production. Without the hydrogen peroxide, the contribution of oxidation is equal to that of the reduction reaction, and in this case bromate formation is effective. When, under the same initial operational conditions, we apply hydrogen peroxide with an increase in pH, we observe a decrease in bromate formation with a decrease of the dissolved ozone concentration, which hinders the desired disinfection. The main contribution to atrazine oxidation is from the free-radical reactions, which explains why removal is better when we apply hydrogen peroxide than when we use ozone alone. However, if we want to respect a low bromate level in drinking water, atrazine degradation should not be greater than 90% for the operational conditions on our pilot-scale.If an accidental high pesticide concentration is observed, an addition of hydrogen peroxide with a concurrent increase of pH, could treat the pollution. In this case, a subsequent chlorination step would then have to be used to assure the disinfection alone

    Atmospheric parameters of Cepheids from flux ratios with ATHOS: I. The temperature scale

    Get PDF
    Context: The effective temperature is a key parameter governing the properties of a star. For stellar chemistry, it has the strongest impact on the accuracy of the abundances derived. Since Cepheids are pulsating stars, determining their effective temperature is more complicated that in the case of non-variable stars. Aims: We want to provide a new temperature scale for classical Cepheids, with a high precision and full control of the systematics. Methods: Using a data-driven machine learning technique employing observed spectra, and taking great care to accurately phase single-epoch observations, we have tied flux ratios to (label) temperatures derived using the infrared surface brightness method. Results: We identified 143 flux ratios that allow us to determine the effective temperature with a precision of a few K and an accuracy better than 150 K, which is in line with the most accurate temperature measures available to date. The method does not require a normalization of the input spectra and provides homogeneous temperatures for low- and high-resolution spectra, even at the lowest signal-to-noise ratios. Due to the lack of a dataset of sufficient sample size for Small Magellanic Cloud Cepheids, the temperature scale does not extend to Cepheids with [Fe/H] < -0.6 dex but nevertheless provides an exquisite, homogeneous means of characterizing Galactic and Large Magellanic Cloud Cepheids. Conclusions: The temperature scale will be extremely useful in the context of spectroscopic surveys for Milky Way archaeology with the WEAVE and 4MOST spectrographs. It paves the way for highly accurate and precise metallicity estimates, which will allow us to assess the possible metallicity dependence of Cepheids' period-luminosity relations and, in turn, to improve our measurement of the Hubble constant H0.Comment: 16 pages, 13 figures, accepted in A&

    Two-dimensional non-LTE \ion{O}{I} 777\,nm line formation in radiation hydrodynamics simulations of Cepheid atmospheres

    Full text link
    Oxygen abundance measurements are important for understanding stellar structure and evolution. Measured in Cepheids, they further provide clues on the metallicity gradient and chemo-dynamical evolution in the Galaxy. However, most of the abundance analyses of Cepheids to date have been based on one-dimensional (1D) hydrostatic model atmospheres. Here, we test the validity of this approach for the key oxygen abundance diagnostic, the \ion{O}{I} 777nm777\,\mathrm{nm}~triplet lines. We carry out 2D non-LTE radiative transfer clculations across two different 2D radiation hydrodynamics simulations of Cepheid atmospheres, having stellar parameters of Teff=5600T_\mathrm{eff}= 5600 K, solar chemical compositions, and logg=1.5\log\,g= 1.5 and 2.02.0, corresponding to pulsation periods of 9 and 3 days, respectively. We find that the 2D non-LTE versus 1D LTE abundance differences range from 1.0-1.0~dex to 0.25-0.25~dex depending on pulsational phase. The 2D non-LTE versus 1D non-LTE abundance differences range from 0.2-0.2~dex to 0.80.8~dex. The abundance differences are smallest when the Cepheid atmospheres are closest to hydrostatic equilibrium, corresponding to phases of around 0.30.3 to 0.80.8, and we recommend these phases for observers deriving the oxygen abundance from \ion{O}{I} 777nm777\,\mathrm{nm} triplet with 1D hydrostatic models.Comment: 9 pages, 10 figures; Published in Astronomy and Astrophysic

    Deep secrets of intermediate-mass giants and supergiants: Models with rotation seem to overestimate mixing effects on the surface abundances of C, N, and Na

    Get PDF
    Recent observational results have demonstrated an increase in the surface Na abundance that correlates with stellar mass for red giants between 2 and 3 Msun. This trend supports evolutionary mixing processes as the explanation for Na overabundances seen in some red giants. In this same mass range, the surface Al abundance was shown to be constant. Our main aim was to extend the investigation of the Na and Al surface abundances to giants more massive than 3 Msun. We sought to establish accurately whether the Na abundances keep increasing with stellar mass or a plateau is reached. In addition, we investigated whether mixing can affect the surface abundance of Al in giants more massive than 3 Msun. We obtained new high-resolution spectra of 20 giants in the field of 10 open clusters; 17 of these stars were found to be members of 9 clusters. The giants have masses between 2.5 Msun and 5.6 Msun. Abundances of C, N, and O were determined using spectrum synthesis. The abundances of Na and Al were corrected for non-local thermodynamic equilibrium effects (non-LTE). Moreover, to extend the mass range of our sample, we collected from the literature high-quality C, N, O, and Na abundances of 32 Galactic Cepheids with accurate masses in the range between 3 Msun and 14 Msun. The surface abundances of C, N, O, Na, and Al were compared to predictions of stellar evolution models with and without the inclusion of rotation-induced mixing. The surface abundances of most giants and Cepheids of the sample can be explained by models without rotation. For giants above ~ 2.5 Msun, the Na abundances reach a plateau level of about [Na/Fe] ~ 0.20-0.25 dex (in non-LTE). Our results support previous works that found models with rotation to overestimate the mixing effects in intermediate-mass stars. [abridged]Comment: 17 pages, accepted for publication in A&
    corecore