572 research outputs found

    Multilevel Richardson-Romberg extrapolation

    Get PDF
    We propose and analyze a Multilevel Richardson-Romberg (MLRR) estimator which combines the higher order bias cancellation of the Multistep Richardson-Romberg method introduced in [Pa07] and the variance control resulting from the stratification introduced in the Multilevel Monte Carlo (MLMC) method (see [Hei01, Gi08]). Thus, in standard frameworks like discretization schemes of diffusion processes, the root mean squared error (RMSE) ε>0\varepsilon > 0 can be achieved with our MLRR estimator with a global complexity of ε2log(1/ε)\varepsilon^{-2} \log(1/\varepsilon) instead of ε2(log(1/ε))2\varepsilon^{-2} (\log(1/\varepsilon))^2 with the standard MLMC method, at least when the weak error E[Yh]E[Y0]\mathbf{E}[Y_h]-\mathbf{E}[Y_0] of the biased implemented estimator YhY_h can be expanded at any order in hh and YhY02=O(h12)\|Y_h - Y_0\|_2 = O(h^{\frac{1}{2}}). The MLRR estimator is then halfway between a regular MLMC and a virtual unbiased Monte Carlo. When the strong error YhY02=O(hβ2)\|Y_h - Y_0\|_2 = O(h^{\frac{\beta}{2}}), β<1\beta < 1, the gain of MLRR over MLMC becomes even more striking. We carry out numerical simulations to compare these estimators in two settings: vanilla and path-dependent option pricing by Monte Carlo simulation and the less classical Nested Monte Carlo simulation.Comment: 38 page

    Joint Modelling of Gas and Electricity spot prices

    Get PDF
    The recent liberalization of the electricity and gas markets has resulted in the growth of energy exchanges and modelling problems. In this paper, we modelize jointly gas and electricity spot prices using a mean-reverting model which fits the correlations structures for the two commodities. The dynamics are based on Ornstein processes with parameterized diffusion coefficients. Moreover, using the empirical distributions of the spot prices, we derive a class of such parameterized diffusions which captures the most salient statistical properties: stationarity, spikes and heavy-tailed distributions. The associated calibration procedure is based on standard and efficient statistical tools. We calibrate the model on French market for electricity and on UK market for gas, and then simulate some trajectories which reproduce well the observed prices behavior. Finally, we illustrate the importance of the correlation structure and of the presence of spikes by measuring the risk on a power plant portfolio

    On some Non Asymptotic Bounds for the Euler Scheme

    Get PDF
    We obtain non asymptotic bounds for the Monte Carlo algorithm associated to the Euler discretization of some diffusion processes. The key tool is the Gaussian concentration satisfied by the density of the discretization scheme. This Gaussian concentration is derived from a Gaussian upper bound of the density of the scheme and a modification of the so-called "Herbst argument" used to prove Logarithmic Sobolev inequalities. We eventually establish a Gaussian lower bound for the density of the scheme that emphasizes the concentration is sharp.Comment: 26 page

    Joint Modelling of Gas and Electricity spot prices

    Get PDF
    The recent liberalization of the electricity and gas markets has resulted in the growth of energy exchanges and modelling problems. In this paper, we modelize jointly gas and electricity spot prices using a mean-reverting model which fits the correlations structures for the two commodities. The dynamics are based on Ornstein processes with parameterized diffusion coefficients. Moreover, using the empirical distributions of the spot prices, we derive a class of such parameterized diffusions which captures the most salient statistical properties: stationarity, spikes and heavy-tailed distributions. The associated calibration procedure is based on standard and efficient statistical tools. We calibrate the model on French market for electricity and on UK market for gas, and then simulate some trajectories which reproduce well the observed prices behavior. Finally, we illustrate the importance of the correlation structure and of the presence of spikes by measuring the risk on a power plant portfolio.Electricity markets; spot price modelling; ergodic diffusion; saddlepoint

    Behavior of the Euler scheme with decreasing step in a degenerate situation

    Get PDF
    The aim of this paper is to study the behavior of the weighted empirical measures of the decreasing step Euler scheme of a one-dimensional diffusion process having multiple invariant measures. This situation can occur when the drift and the diffusion coefficient are vanish simultaneously. As a first step, we give a brief description of the Feller's classification of the one-dimensional process. We recall the concept of attractive and repulsive boundary point and introduce the concept of strongly repulsive point. That allows us to establish a classification of the ergodic behavior of the diffusion. We conclude this section by giving necessary and sufficient conditions on the nature of boundary points in terms of Lyapunov functions. In the second section we use this characterization to study the decreasing step Euler scheme. We give also an numerical example in higher dimension

    Incremental Decision Tree based on order statistics

    Get PDF
    International audienceNew application domains generate data which are not persistent anymore but volatile: network management, web profile modeling... These data arrive quickly, massively and are visible just once. Thus they necessarily have to be learnt according to their arrival orders. For classification problems online decision trees are known to perform well and are widely used on streaming data. In this paper, we propose a new decision tree method based on order statistics. The construction of an online tree usually needs summaries in the leaves. Our solution uses bounded error quantiles summaries. A robust and performing discretization or grouping method uses these summaries to provide, at the same time, a criterion to find the best split and better density estimations. This estimation is then used to build a na¨ıve Bayes classifier in the leaves to improve the prediction in the early learning stage

    Unconstrained Recursive Importance Sampling

    Get PDF
    We propose an unconstrained stochastic approximation method of finding the optimal measure change (in an a priori parametric family) for Monte Carlo simulations. We consider different parametric families based on the Girsanov theorem and the Esscher transform (or exponential-tilting). In a multidimensional Gaussian framework, Arouna uses a projected Robbins-Monro procedure to select the parameter minimizing the variance. In our approach, the parameter (scalar or process) is selected by a classical Robbins-Monro procedure without projection or truncation. To obtain this unconstrained algorithm we intensively use the regularity of the density of the law without assume smoothness of the payoff. We prove the convergence for a large class of multidimensional distributions and diffusion processes. We illustrate the effectiveness of our algorithm via pricing a Basket payoff under a multidimensional NIG distribution, and pricing a barrier options in different markets.Comment: 30
    corecore