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BEHAVIOR OF THE EULER SCHEME WITH DECREASING STEP
IN A DEGENERATE SITUATION
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Abstract. The aim of this short note is to study the behavior of the weighted empirical measures of
the decreasing step Euler scheme of a one-dimensional diffusion process having multiple invariant mea-
sures. This situation can occur when the drift and the diffusion coefficient are vanish simultaneously.
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1. Introduction and framework

First, let us recall some results about the behavior of a one-dimensional diffusion process. Let I =]l, r[ denote
an open (non-trivial) interval of the real line R. We consider the following stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dBt, (1)

where X0 is a random variable taking values in I and
(
Bt

)
t�0

a standard Brownian motion on R. We assume
that b and σ are continuous functions on Ī taking values in R, and that σ is not degenerate on I i.e. ∀x ∈ I,
σ2(x) > 0. Then there exists a unique solution

(
Xt

)
t�0

adapted to the completed Brownian filtration, such that
t �→ Xt is continuous on [0, ζ[, where ζ = inf {t � 0, Xt = l or Xt = r} is the explosion time of the diffusion.

The classification of one-dimensional diffusion processes is due to Feller, in particular in [1] and [2]. An
overview and a comparison with the Russian terminology are given in [4]. In this classification, there is essentially
two concepts: “attractivity” and “attainability” to determine the behavior of the diffusion in a neighborhood
of a boundary point. The notion of attractivity of a boundary point (l or r) is defined using the scale function.
The scale function p is a strictly increasing function defined up to an affine transformation and such that the
process

(
p(Xζ

t )t

)
t�0

is a local martingale. In our framework (σ not degenerated on I), p is in C2(I,R) and
satisfies Ap = 0 where A is the infinitesimal generator. The attainability of a boundary point is defined using
the speed measure of the process i.e. the measure with density m = 2

σ2p′ with respect to the Lebesgue measure.
A boundary point ∆ (∆ = l or ∆ = r) is said to be attractive if lim

b→∆
b∈I

|p(b)| < +∞ and repulsive if not. From

a probabilistic point of view, if ∆ is an attractive boundary point, then for all a ∈ I and all x in the open
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interval with endpoints a and ∆ we have

Px

[
lim
b→∆
b∈I

Tb � Ta

]
> 0.

where Ta denotes the hitting time of the one-point set {a} i.e. Ta = inf {t � 0, Xt = a}. If ∆ is attractive then
∆ is attainable if and only if Px [T∆ < +∞] > 0. More generally, we say that a boundary point is attainable if
for all a ∈ I and x in the open interval of endpoints a and ∆ we have

lim
b→∆

Ex [Tb ∧ Ta] < +∞.

Furthermore, in this paper, we say that a repulsive boundary point ∆ is strongly repulsive if for every c ∈ I we
have

∣∣∫ c

∆
m(y)dy

∣∣ < +∞. The speed measure is thus finite in a neighborhood of a strongly repulsive point. Using
these definitions, we are able to establish the following classification of the ergodic behavior of the diffusion.

Theorem 1.1. We recall that ζ = inf {t � 0, Xt = l or Xt = r}. Then

• if l is attractive and r is repulsive then Xζ
t

a.s−−→ l;
• if l and r are attractive then

P
[

lim
t→+∞Xζ

t = l

]
= 1 − P

[
lim

t→+∞Xζ
t = r

]
=

p(r−) − p(X0)
p(r−) − p(l+)

;

• if l and r are repulsive then the diffusion is recurrent and does not explode (ζ = +∞ a.s.). More
precisely

– if l and r are strongly repulsive (i.e. the speed measure is finite) then the diffusion is positive
recurrent and νt ⇒ ν a.s. where ν is the normalized speed measure. Moreover

∀f ∈ L1(ν),
1
t

∫ t

0

f(Xs)ds −−→
∫
R

f(x)ν(dx) a.s.;

– if l is strongly repulsive and r is (simply) repulsive then the diffusion is null recurrent and if the
empirical measures are tight we have

1
t

∫ t

0

δXsds ⇒ δr a.s.;

– if l and r are not strongly repulsive then the diffusion is null recurrent, and if the empirical
measures are tight then any weak limit of

(
1
t

∫ t

0
δXsds

)
t�1

is a measure with support {l, r}.

The first two items are proved in [3] (Prop. 5.22). The third item is proven in Appendix A.
Let us now recall the link between the concepts of attractivity, repulsivity and strong repulsivity, and the

Lyapunov functions. This link given by the following proposition is useful to study the ergodic behavior of the
decreasing step Euler scheme. In the sequel, we will denote by J∆ ⊂ I an open (non-trivial) interval included
in I with endpoint ∆.

Proposition 1.2. Let ∆ a boundary point of I.
(1) ∆ is a repulsive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and a strictly

monotone function v ∈ C2(J̄∆,R+) satisfying v(∆) = 0, such that

∀x ∈ J∆, Av(x) � 1
2
σ2(x)

(v′(x))2

v(x)
, (2)
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(2) ∆ is a strongly repulsive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and
a strictly monotone function v ∈ C2(J̄∆,R+) having a minimum at ∆, such that

∃ε > 0, ∀x ∈ J∆, Av(x) � 1
2
σ2(x)

(v′(x))2

v(x)
+ εv(x), (3)

(3) ∆ is an attractive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and a
strictly monotone function v ∈ C2(J̄∆,R+) having a minimum at ∆, such that

∀x ∈ J∆, Av(x) <
1
2
σ2(x)

(v′(x))2

v(x)
· (4)

This proposition is proven in Appendix B.

Remark 1.3. If ∆ is such that b(∆) = σ(∆) = 0, then ∆ is a critical point for the equation u′ = b(u). It is
worth noting that there exists a link between the nature of the critical point ∆ for the ODE u′ = b(u) and the
nature of the boundary point ∆ for the SDE.

Indeed, if ∆ is a stable critical point then there exists a Lyapunov function F ∈ C2 such that F ′b(u) < 0 for
every u in a neighborhood of ∆. If F ′/F is decreasing, the above proposition implies that ∆ is an attractive
boundary point for the SDE.

If ∆ is an unstable point for the ODE u′ = b(u), it may be repulsive, strongly repulsive or attractive for the
SDE, as shown in Example 2.6.

Let us now suppose that the diffusion
(
Xt

)
t�0

on the real line has (at least) a point ∆ such that b(∆) =
σ(∆) = 0. In this situation we have

∀x ∈] −∞, ∆[, Px [Xt ∈] −∞, ∆]] = 1, and ∀x ∈]∆, +∞[, Px [Xt ∈ [∆, +∞[] = 1.

In fact, the process
(
Xt

)
t�0

has an ergodic behavior in I1 =]−∞, ∆[ or in I2 =]∆, +∞[ according to the starting
point x. The Euler scheme of this diffusion is not continuous and may a priori jump above the boundary point
∆. In this note, we show that in some particular cases the boundary ∆ becomes a border for the scheme after
an almost surely finite time. This is the principal result given by Theorem 2.1. We next prove in Proposition 2.5
that the empirical measures of the scheme have the same behavior than the empirical measures of the diffusion.
Finally, a numerical example is given to illustrate these results.

2. Behavior of the Euler scheme with decreasing step

The Euler scheme
(
Xn

)
n�0

with decreasing step
(
γn

)
n�1

is defined as follows. Consider a positive sequence(
γn

)
n�1

satisfying limn

∑n
k=1 γk = +∞ and denote Γn =

∑n
k=1 γk. The Euler scheme is the inhomogeneous

Markov chain defined as
Xn+1 = Xn + γn+1b(Xn) +

√
γn+1σ(Xn)Un+1,

with
(
Un

)
n�1

a real white noise i.e. a sequence of i.i.d. random variables such that E [U1] = 0 and var(U1) = 1.
Furthermore, we assume that U1 is a generalized Gaussian (cf. [9]) i.e. such that

∃κ > 0, ∀θ ∈ R, E
[
exp(θU1)

]
� exp

(
κ|θ|2

2

)
.

For example U1 is a standard Gaussian or a Bernoulli random variable. A consequence of the generalized
Gaussian property is the following

∀a � 0, P
[|U1| � a

]
� exp

(
− a2

2κ

)
. (5)
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We consider a diffusion
(
Xt

)
t�0

on the real line with b and σ continuous on R. Moreover we assume that b

and σ have sublinear growth i.e.

∃Cb > 0, |b|2 � Cb(1 + |x|), and ∃Cσ > 0, |σ|2 � Cσ(1 + |x|). (6)

In the sequel ∆ denotes a finite point of R such that b(∆) = σ(∆) = 0, and J∆ denotes an open interval with
endpoint ∆ (J∆ =]∆, ∆ + ε[ if ∆ is a left endpoint of I =]∆, +∞[ and J∆ =]∆ − ε, ∆[ if it is a right endpoint
of I =] −∞, ∆[).

2.1. Euler scheme

We prove the following theorem which gives the behavior of one trajectory of the Euler scheme
(
Xn

)
n�0

in
this degenerate situation.

Theorem 2.1. We assume that σ satisfies σ(x) �= 0 for every x ∈] − ∞, ∆[∪]∆, +∞[ and that there exists
U∆ =]∆ − ε, ∆ + ε[ with ε > 0, and a convex function v ∈ C2(U∆,R+) satisfying v(∆) = 0 and

∀x ∈ U∆, (v′b)(x) � 0 and ∃cσ > 0, ∀x ∈ U∆, |(v′σ)(x)| � cσv(x). (7)

If the step sequence
(
γn

)
n�1

satisfies ∀C > 0,
∑

n�1 exp
(
− C

γn

)
< +∞ then the Euler scheme jump above ∆ a

finite number of times i.e.

P
[∃n0 � 0, ∀n � n0, Xn ∈] −∞, ∆[

]
+ P

[∃n0 � 0, ∀n � n0, Xn ∈]∆, +∞[
]

= 1.

We first prove the following lemma.

Lemma 2.2. We assume there exists a convex function v ∈ C2(J̄∆,R+) satisfying v(∆) = 0 and

∀x ∈ J̄∆, (v′b)(x) � 0 and ∃cσ > 0, ∀x ∈ J∆, |(v′σ)(x)| � cσv(x). (8)

Then, on the event
{
Xn ∈ J̄∆

}
P
[
∆ ∈ (Xn, Xn+1)

∣∣Fn

]
� exp

(
− 1

c2
σγn+1

)
.

Proof. We assume that ∆ is a left endpoint of I and we denote by An+1 the event {∆ ∈ (Xn, Xn+1)} (the
geometric segment with endpoints Xn and Xn+1). Since v is continuous and v(∆) = 0 it is clear that

An+1 = {∃t ∈ [0, 1], Xn + t(Xn+1 − Xn)) = ∆} ,

⊂ {∃t ∈ [0, 1], v(Xn + t(Xn+1 − Xn)) = 0} . (9)

Consider t ∈ [0, 1] such that ∆ = Xn + t(Xn+1 − Xn). As v is C2 on J̄∆, Taylor’s formula gives

v(Xn + t(Xn+1 − Xn)) = v(Xn) + v′(Xn)t(Xn+1 − Xn) +
v′′(ξn+1)

2
t2(Xn+1 − Xn)2,

with ξn+1 ∈]∆, Xn[. The convexity of v implies

0 = v(Xn + t(Xn+1 − Xn)) � v(Xn) + tγn+1(v′b)(Xn) + t
√

γn+1(v′σ)(Xn)Un+1.

Since v′b � 0 on J̄∆ we have from (9)

An+1 ∩
{
Xn ∈ J̄∆

} ⊂ {∃t ∈ [0, 1], v(Xn) + t
√

γn+1(v′σ)(Xn)Un+1 � 0
} ∩ {Xn ∈ J̄∆

}
,

⊂ {∃t ∈ [0, 1], t
√

γn+1|(v′σ)(Xn)Un+1| � v(Xn)
} ∩ {Xn ∈ J̄∆

}
.



240 V. LEMAIRE

Hence for any n � 0, we have on the event
{
Xn ∈ J̄∆

}

P [An+1 | Fn] � P
[
|Un+1| � v(Xn)√

γn+1|(v′σ)(Xn)|
∣∣∣∣Fn

]
,

� P
[
|Un+1| � 1

cσ
√

γn+1

∣∣∣∣Fn

]
,

by the domination assumption (8) on v′σ. We conclude using property (5) of the random variable U1. �
Proof. By Lemma 2.2 we prove easily that for every n � 0

P
[
∆ ∈ (Xn, Xn+1)

∣∣Fn

]
� exp

(
− 1

c2
σγn+1

)
on Xn ∈ U∆. (10)

We now consider the event {Xn /∈ U∆}. Then we have

{∆ ∈ (Xn, Xn+1)} =
{
∃t ∈ [0, 1], Un+1 =

∆ − Xn

t
√

γn+1σ(Xn)
−√

γn+1
b(Xn)
σ(Xn)

}
,

⊂
{
|Un+1| � |∆ − Xn|√

γn+1|σ(Xn)| −
√

γn+1
|b(Xn)|
|σ(Xn)|

}
.

As the drift b is dominated by Cb(1 + |x|), we have

{∆ ∈ (Xn, Xn+1)} ⊂
{
|Un+1| �

( |∆ − Xn|√
γn+1Cb(1 + |Xn|) −√

γn+1

)
Cb(1 + |Xn|)

|σ(Xn)|
}

,

and using the triangular inequality and |Xn − ∆| � ε we prove that |∆−Xn|
1+|Xn| � 1

1+ 1+|∆|
ε

. We also deduce that

there exists n1 � 0 and C > 0 such that for any n � n1,

P [{∆ ∈ (Xn, Xn+1)} ∩ {Xn /∈ U∆} | Fn] � P
[{

|Un+1| � C√
γn+1

Cb(1 + |Xn|)
|σ(Xn)|

}
∩ {Xn /∈ U∆}

∣∣∣∣Fn

]
,

� P
[{

|Un+1| � CCb

Cσ
√

γn+1

}
∩ {Xn /∈ U∆}

∣∣∣∣Fn

]
, (11)

using |σ| �
√

Cσ

√
V .

From (10) and (11) combined with (5), we get

∃n1 � 0, ∃C > 0, ∀n � n1, P
[
∆ ∈ (Xn, Xn+1)

∣∣Fn

]
� exp

(
− C

γn+1

)
.

By the condition on the sequence
(
γn

)
n�1

and the conditional Borel-cantelli lemma we deduce that the event
{∆ ∈ (Xn, Xn+1)} occurs a finite number of times. �
Remark 2.3. The condition on the step sequence

(
γn

)
n�1

is not restrictive. Indeed, it is satisfied for
(
γn

)
n�1

defined by γn = γ0n
−r with γ0 > 0 and r ∈]0, 1], or γn = log(n)−r with r > 1.

The technical assumption “v convex” is not very restrictive in practice. The important point to note is the
condition v′b � 0 which implies that ∆ is unstable for the ODE u′ = b(u). But ∆ may be repulsive as well as
attractive for the SDE (cf. Rem. 1.3). The condition v′σ = O(v) in a neighborhood of ∆ is very important and
it seems difficult to relax it.
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Remark 2.4. It is easy to extend the above theorem to the case of finitely many boundary points ∆i. If for
every ∆i, there exists a neighborhood U∆i and a convex function vi ∈ C2(U∆i ,R) such that v(∆) = 0 and
satisfying (7), then

P [∃i ∈ {0, . . . , l} , ∃n0 � 0, ∀n � n0, Xn ∈]∆i, ∆i+1[] = 1,

with ∆0 = −∞ and ∆l+1 = +∞.

2.2. Weighted empirical measures

Let
(
ηn

)
n�1

a positive sequence, called weight sequence, such that Hn =
∑n

k=1 ηk increases to +∞ when n

tends to +∞. We define the weighted empirical measures
(
νη

n

)
n�1

by

∀n � 1, νη
n(dx) =

1
Hk

n∑
k=1

ηkδXk−1 .

In this section we assume that the diffusion satisfies a stability condition i.e.

∃α > 0, ∀|x| � M, xb(x) +
1
2
σ2(x) � −αx2.

This condition implies that the points −∞ and +∞ are strongly repulsive and that the empirical measures(
νt

)
t�0

are tight. Since b and σ have sublinear growth, this condition implies also the tightness of the weighted
empirical measures

(
νη

n

)
n�1

of the scheme and that any weak limit is an invariant probability for the diffusion
(cf. [5] or [6]).

A consequence of Theorem 2.1 is the following proposition which describe the convergence of
(
νη

n

)
n�1

ac-
cording to the behavior of b and σ in a neighborhood of ∆. For more clearness, we parametrize b and σ.

Proposition 2.5. Let ∆ the unique point of R such that b(∆) = σ(∆) = 0. We assume that in a neighborhood
of ∆ we have b(x) = sgn(x − ∆)ρb(x) and σ(x) = ρσ(x) with ρb � 0,

ρb(x) ∼ cb|x − ∆|β and σ(x) ∼ cσ|x − ∆|ς , (12)

where β, ς, cb and cσ are positive real numbers and ς � 1. If the step sequence
(
γn

)
n�1

satisfies ∀C > 0,∑
n�1 exp(−C/γn) < +∞, then

• if 1 + β − 2ς > 0 then ∆ is an attractive boundary point and νη
n ⇒ δ∆,

• if 1 + β − 2ς = 0 and cσ >
√

2cb then ∆ is an attractive boundary point and νη
n ⇒ δ∆,

• if 1 + β − 2ς = 0, cσ <
√

2cb and β = 1 (which implies ς = 1) then ∆ is a strongly repulsive boundary
point and νη

n ⇒ ν+ or νη
n ⇒ ν−,

• if 1 + β − 2ς < 0, cσ �
√

2cb and β ∈]0, 1] then ∆ is a strongly repulsive boundary point and νη
n ⇒ ν+

or νη
n ⇒ ν−,

where ν+ is the invariant probability on ]∆, +∞[ and ν− the invariant probability on ] −∞, ∆[.

Proof. To simplify notation, we assume without loss of generality that ∆ = 0.
Let U∆ =]∆ − ε, ∆ + ε[ a neighborhood of ∆ and the convex function v(x) = x2. Then for every x ∈ U∆ we

have
v′b = 2x sgn(x)ρb(x) � 0.

Moreover v′σ ∼ cσ|x|ς+1 with ς � 1 hence there exists C > 0 such that |v′σ| � Cv. By Theorem 2.1 we know
then that the scheme lives in ] −∞, ∆[ or in ]∆, +∞[ after an almost-surely finite random time.

Furthermore, with v(x) = x2 we have

∀x ∈ U∆, Av(x) = 2|x|ρb(x) + σ2(x) = 2cb|x|1+β + c2
σ|x|2ς + o

(
|x|(1+β)∨(2ς)

)
, (13)
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and
1
2
σ2(x)

(v′(x))2

v(x)
= 2σ2(x) ∼ 2c2

σ|x|2ς .

– If 1 + β > 2ς, there exists a neighborhood of 0 in which Av < 1
2σ (v′)2

v . Hence by Proposition 1.2, 0 is
an attractive boundary point. The sequence of weighted empirical measures

(
νη

n

)
n�1

of the scheme is tight on
[0, +∞[ and on ] − ∞, 0], and any weak limit is an invariant probability. However, δ0 (the Dirac at 0) is the
unique invariant probability on [0, +∞[ or on ]−∞, 0]. Thus any weak limit of

(
νη

n

)
n�1

is δ0, which proves the
first item.

– If 1 + β = 2ς, Av(x) = (2cb + c2
σ)|x|2ς + o

(
|x|2ς

)
. If cσ >

√
2cb there exists a neighborhood of 0 in which

Av < 2σ2 and we conclude as above.
If β = 1 and cb <

√
2cb, we have for every x in U∆, Av(x) � 2σ2(x) + εx2. By Proposition 1.2, the point 0

is then strongly repulsive. Any weak limit of
(
νη

n

)
n�0

is a probability on ] −∞, 0[ or on ]0, +∞[, therefore we
have νη

n ⇒ ν− or νη
n ⇒ ν+ (we recall that the boundary points −∞ and +∞ are strongly repulsive).

– The proof for the case 1 + β < 2ς, cς �
√

2cb and β ∈]0, 1] is similar. �

In order to illustrate this result, let us consider the following example.

Example 2.6. We consider, like in [7], the function V : R → R+ defined by

V (x) =

{(
x − 3 sgn(x)

)2 if |x| � 3,
1
72 (x2 − 9)2 if |x| � 3

and b(x) =

{
−2
(
x − 3 sgn(x)

)
if |x| � 3,

− 1
18x3 + 1

2x if |x| � 3
,

and b = −V ′. The ordinary differential equation u′ = b(u) has 3 critical points: −3, 0 and 3. The points −3
and 3 are stable and the point 0 is unstable. Let c ∈]0, 2[ a parameter and σ defined by σ(x) = cx. We consider
the process

(
Xt

)
t�0

solution of the SDE dXt = b(Xt)dt + σ(Xt)dBt. It is clear that the point 0 is a boundary
point for

(
Xt

)
t�0

. Moreover we check that

AV (x) = − (4 − c2
)
x2 + 12 sgn(x) if |x| � 3,

and that the points −∞ and +∞ are then strongly repulsive.
On the other hand, we use Proposition 1.2 to determine the nature of the boundary point 0 according to c.

Assume that I =]0, +∞[ and let v the function defined on [0, +∞[ by v(x) = x2. We have

∀x ∈]0, 3[, Av(x) = (1 + c2)x2 − 1
9
x4 and

1
2
σ2(x)

(v′(x))2

v(x)
= 2c2x2, (14)

and then

• if c < 1 the boundary point 0 is strongly repulsive (for ]0, +∞[ and ]−∞, 0[ by symmetry). Indeed the

condition (3) is satisfied with ε = 1−c2

2 and J∆ =
]
0, 3
√

1−c2

2

[
;

• if c > 1 it is easy to check that the boundary point 0 is attractive;
• if c = 1 we consider the function v(x) = x exp(x) and we check that 0 is a repulsive boundary point.

Thus the nature of the boundary point 0 (which is always stable for the ODE u′ = b(u)) may change according
to c. By Theorem 1.1 the ergodic behavior of

(
Xt

)
t�0

is the following:

• if c ∈]1, 2[ then Xt
a.s−−→ 0 (for every starting point X0);

• if c = 1 then 1
t

∫ t

0 δXs(dx) ⇒ δ0;
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Figure 1. Approximation of the stationary density for different values of c.

• if c < 1 then for every f ∈ L1(m)

1
t

∫ t

0

f(Xs)ds
a.s−−→

⎧⎪⎨
⎪⎩
∫

fdν− if X0 ∈]0, +∞[
f(0) if X0 = 0∫

fdν+ if X0 ∈] −∞, 0[

with ν− the invariant measure of
(
Xt

)
t�0

on ] −∞, 0[ and ν+ the invariant measure on ]0, +∞[.

By the above Proposition, we know that the weighted empirical measure
(
νη

n

)
n�1

weakly converge to δ0 when
c ∈]1, 2[ and to ν+ or ν− when c ∈]0, 1[. Note that the convergence to ν+ or ν− does not depend on the initial
condition and is not previsible.

We give a representation of the density of ν approximated by νη
n with n = 106. More precisely, we discretize

the interval [−2, 8] using 200 intervals Ii of length 0.05 and we compute νη
n(1Ii) for each Ii with n = 106. The

step sequence
(
γn

)
n�1

is defined by γn = n−1/3 and the weight sequence
(
ηn

)
n�1

is defined by ηn = 1. The
results of this approximation of the stationary density are given in Figure 1 for different values of c.

We remark that for a small noise (c = 0.1), the invariant probability concentrates around a stable point of
the ODE u′ = b(u) (the point 3), and the more coefficient of diffusion increases, the more the invariant measure
is spread out. For c = 0.75 we show that the invariant measure is infinite at 0, and for c = 1 the invariant
measures seems to be the Dirac mass at 0.
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A. Proof of Theorem 1.1

We first prove the following lemma.

Lemma A.1. If the two boundary points l and r are repulsive then the diffusion is positive recurrent if and
only if its speed measure is finite.

Proof. By definition, the diffusion is positive recurrent if and only if for all a and b in I, Ea [Tb] < +∞ and
Eb [Ta] < +∞. Let l < a < b < r. By symmetry it is sufficient to prove that

Ea [Tb] < +∞ ⇔
∫ a

l

m(y)dy < +∞. (15)

Firstly, l is repulsive and Tl = limx→l Tx therefore Ea [Tb] = Ea [Tb ∧ Tl] = limx→l Ea [Tb ∧ Tx]. Moreover we
have ∀x ∈]l, a[,

Ea [Tb ∧ Tx] = Pa [Tb < Tx]
∫ b

a

(p(b) − p(y))m(y)dy + Pa [Tx � Tb]
∫ a

x

(p(y) − p(x))m(y)dy,

and since
∫ b

a
(p(b) − p(y))m(y)dy is finite and does not depend on x, the limit when x tends to l of Ea [Tb ∧ Tx]

is finite if and only if

lim
x→l

(
Pa [Tx � Tb]

∫ a

x

(p(y) − p(x))m(y)dy

)
< +∞.

As Pa [Tx � Tb] = p(b)−p(a)
p(b)−p(x) we have

Pa [Tx � Tb]
∫ a

x

(p(y) − p(x))m(y)dy = (p(b) − p(a))
∫ a

x

p(y) − p(x)
p(b) − p(x)

m(y)dy,

= (p(b) − p(a))
∫ a

x

Py [Tb < Tx] m(y)dy,

and it follows that Ea [Tb] < +∞ if and only if lim
x→l

∫ a

x

Py [Tb < Tx]m(y)dy < +∞. Since Tx strictly increases

to Tl, Py [Tb < Tx] increases to Py [Tb < Tl] = 1 because l is repulsive. The monotone convergence theorem
yields (15). �
Proof of Theorem 1.1. The first two items are proved in [3] (Prop. 5.22). We prove the third item. Suppose
that l and r are repulsive. By definition of the scale function we have for all l < a < x < b < r

Px

[
inf

0�t<ζ
Xt � a

]
� Px [xTa∧Tb

= a] =
p(b) − p(x)
p(b) − p(a)

·

Increasing b to r we obtain Px [inf0�t<ζ Xt � a] = 1 since r is repulsive. The limit when a decreases to l also
gives

Px

[
inf

0�t<ζ
Xt = l

]
= 1.

In the same way we obtain Px

[
sup0�t<ζ Xt = r

]
= 1. The diffusion is thus recurrent on I and ζ = +∞ a.s.

Moreover, by Lemma A.1 we know that the recurrence is positive if and only if the speed measure is finite.
– If the two boundary points are repulsive then the speed measure is finite and by Theorem (53.1) in [8]

we have

∀f ∈ L1(ν),
1
t

∫ t

0

f(Xs)ds ⇒
∫
R

fdν a.s.

where ν is the normalized speed measure.
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– If l is strongly repulsive and r is repulsive then the diffusion is null recurrent. Considering an increasing
sequence of continuous functions with compact support (gn(x))n�1 such that gn(x) → 1 and ∀n � 1,∫
R gn(x)m(dx) �= 0, we obtain by Theorem (53.1) in [8]

∀f ∈ L1(m),
1
t

∫ t

0

f(Xs)ds
a.s−−→ 0. (16)

On the other hand, we consider a sub-sequence
(
νa(t)

)
t�0

of
(
νt

)
t�0

converging to a measure ν (the
empirical measures are tight). Let f be a continuous function with compact support such that supp(f) ⊂
[l, r[. As νa(t) ⇒ ν we have

1
a(t)

∫ a(t)

0

f(Xs)ds
a.s−−→

∫
fdν.

The boundary point l is strongly repulsive and supp(f) ⊂ [l, r[, thus f is integrable with respect to m.
Hence (16) implies

∫
fdν = 0. The interval [l, r[ satisfies

∀f ∈ Cc(Ī), supp(f) ⊂ [l, r[⇒ ν(f) = 0,

therefore supp(ν) = {r}. Since ν is normalized we have ν = δr.
– In the same way, if the two boundary points are strongly repulsive then any weak limit of

(
νt

)
t�0

is a
measure with support {l, r}.

�

B. Proof of Proposition 1.2

We first prove the following proposition which is equivalent to the Proposition 1.2.

Proposition B.1. Let ∆ be a boundary point (finite or infinite, left endpoint or right endpoint) of I. The
following statements are equivalents

(1) ∆ is a repulsive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and a strictly
monotone function V ∈ C2(J∆,R+) such that

lim
x→∆

V (x) = +∞ and ∀x ∈ J∆, AV (x) � 0.

(2) ∆ is a strongly repulsive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and
a strictly monotone function V ∈ C2(J∆,R+) such that

∃ε > 0, ∀x ∈ J∆, AV (x) � −ε.

(3) ∆ is a attractive point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and a strictly monotone
function V ∈ C2(J∆,R+) such that

sup
x∈J∆

V (x) = V (∆) < +∞ and ∀x ∈ J∆, AV (x) � 0.

Proof. We give the proof when ∆ is a right endpoint of I. Then J∆ is an interval ]c, ∆[ with c ∈ I.
• – We suppose that there exists a neighborhood J∆ of ∆ and a function V ∈ C2(J∆,R+) such that

limx→∆ V (x) = +∞ and AV � 0 on J∆. For every x ∈ J∆ we have

AV (x) =
1

m(x)

(
V ′(x)
p′(x)

)′
� 0
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hence V ′/p′ is decreasing on J∆. There also exists C > 0 such that V ′(x) � Cp′(x) for every x ∈]c, ∆[
since p′ > 0. It follows that lim

x→∆
p(x) − p(c) = +∞ because V tends to infinity in ∆.

– Conversely we must find the good Lyapunov function V . Let c > 0 be such that p(c) > 0 (c exists
because ∆ is repulsive). Since p is strictly increasing we have for every x ∈]c, ∆[, p(x) > p(c) > 0. We
also define the function V on ]c, ∆[ by

∀x ∈]c, ∆[, V (x) = p(x) − p(c).

The point ∆ is repulsive thus V increases to infinity when x tends to ∆. Moreover V ∈ C2(]c, ∆[,R+)
and AV = 0.

• – Let V ∈ C2(J∆,R+) be such that limx→∆ V (x) = +∞ and ε > 0 such that AV � −ε. Thus we have

∫
J∆

AV (x)m(x)dx � −ε

∫
J∆

m(x)dx, (17)

and since AV (x) =
1

m(x)

(
V ′(x)
p′(x)

)′
we obtain for every c ∈ J∆,

∫ ∆

c

AV (x)m(x)dx = lim
x→∆

V ′(x)
p′(x)

− V ′(c)
p′(c)

· (18)

By (17) we derive that

∫ ∆

c

m(x)dx � 1
ε

(
V ′(c)
p′(c)

− lim
x→∆

V ′(x)
p′(x)

)
.

As the functions V and p are increasing on J∆ we have lim
x→∆

V ′(x)
p′(x)

� 0, which gives
∫∆

c
m(x)dx � C

(i.e. ∆ strongly repulsive).
– Conversely we assume that ∆ is strongly repulsive. Let c ∈ I and V the function defined on ]c, ∆[ by

∀x ∈]c, ∆[, V (x) =
∫ x

c

(
p′(y)

∫ ∆

y

m(z)dz

)
dy.

It is clear that V ∈ C2(]c, ∆[,R+) and that for every x ∈]c, ∆[, V ′(x) = p′(x)
∫ ∆

x
m(z)dz. Moreover

∀x ∈]x, ∆[, AV (x) = −1.

• We prove (3) in the same manner as (1). For the converse we consider the function V (x) = p(x) − p(c)
on ]c, ∆[ with c such that p(c) > 0.

�

Proof of Proposition 1.2. Let J∆ a neighborhood of ∆ strictly included in I. We consider the case in which ∆
is the right endpoint of I i.e. J∆ =]c, ∆[ with c ∈ I. We first define for L � 0 the function φL by

φL : [0, exp(L)[ → R+,

x �→ − ln(x) + L.
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The function φL is a strictly decreasing one-to-one C∞ function. Moreover, for every C2 function v with values
in [0, exp(L)[ we have

A (φL ◦ v) = −Av

v
+

1
2
σ2 (v′)2

v2
· (19)

• – We assume that there exists v ∈ C2([c, ∆],R+) strictly monotone satisfying v(∆) = 0 and (2). We
also define on ]c, ∆[ the function V by ∀x ∈]c, ∆[, V (x) = (φL ◦ v) (x) with L = ln(v(c)). It is a strictly
monotone function which tends to infinity in ∆. By (2) and (19) we obtain AV � 0 on ]c, ∆[. The
proposition (B.1) implies that ∆ is repulsive.
– Conversely if ∆ is repulsive then there exists V ∈ C2(]c, ∆[,R+) strictly monotone which goes to +∞
when x tends to ∆. We also define v = φ−1

L ◦ V on ]c, ∆[ with L = infx∈]c,∆[ V (x), and we extend it

by continuity on [c, ∆] letting v(c) = 1 and v(∆) = 0. By AV � 0 and (19) we have Av � 1
2σ2 (v′)2

v on
]c, ∆[.

• – Let v a strictly monotone function on [c, ∆] such that v(∆) = 0. For θ � 0 and L = ln(v(c) + θ)
we define V (x) = (φL,θ ◦ v)(x) for every x ∈]c, ∆[. This function V is strictly monotone on ]c, ∆[ and
admits a limit (finite or not) when x tends to ∆. From (3) and (19) we deduce that

∀x ∈]c, ∆[, AV (x) � −ε.

– Conversely we consider the function v = φ−1
L ◦ V on ]c, ∆[ with L = infx∈]c,∆[ V (x) and we extend it

by continuity letting v(c) = 1 and v(∆) = limx→∆ exp(−V (x)).
• The proof is similar to the first two items.

�
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