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Abstract

The recent liberalization of the electricity and gas markets has resulted in the growth of
energy exchanges and modelling problems. In this paper, we modelize jointly gas and elec-
tricity spot prices using a mean-reverting model which fits the correlations structures for the
two commodities. The dynamics are based on Ornstein processes with parameterized diffusion
coefficients. Moreover, using the empirical distributions of the spot prices, we derive a class of
such parameterized diffusions which captures the most salient statistical properties: stationarity,
spikes and heavy-tailed distributions.

The associated calibration procedure is based on standard and efficient statistical tools. We
calibrate the model on French market for electricity and on UK market for gas, and then we
simulate some trajectories which reproduce well the observed prices behavior. Finally, we illus-
trate the importance of the correlation structure and of the presence of spikes by measuring the
risk on a power plant portfolio.

Keywords: Electricity markets; spot price modelling; ergodic diffusion; stochastic differential

equation; saddlepoint

1 Introduction

The recent deregulation of energy markets has led to the development in several countries of market
places for energy exchanges. Consequently, understanding and modelling the behavior of energy
market is necessary for developing a risk management framework as well as pricing of options.
Many derivatives on both electricity and gas spot (and futures) prices are traded. Understanding
the correlation structure between both energies is a significant challenge. For instance, spark spread
options are commonly traded in energy markets as a way to hedge price differences between elec-
tricity and gas prices or are used in order to price projects in energy (see [12] for an introduction).
Thus, modelling jointly the evolution of gas and electricity prices is a relevant issue.

Numerous diffusion-type and econometric models have been proposed for electricity and gas
spot prices. In energy markets, spot price dynamics are commonly based on Ornstein processes,
which are the classical way to model mean-reversion. Geometric models represent the logarithmic
prices by a sum of Ornstein processes with different speeds of mean reversion whereas arithmetic
models represent the price itself (see for instance [21] for a geometric model). Also, equilibrium
models ([2] and [15]) have been investigated in order to reproduce price formation as a balance
between supply and demand. The main drawback of such model is that they do not reproduce the
autocorrelation structure of a commodity and the cross-correlation structure between commodities.
In [13], a markov jump diffusion is investigated for electricity spot prices. Though, it properly
represents the spiky behaviour of spot electricity prices, the process reverts to a deterministic mean
level whereas it usually reverts to the pre-spike value on data. Moreover applied to electricity and
gas spot prices, it does not capture the autocorrelation and cross-correlation struture observed on
data.
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vincent.lemaire@upmc.fr

1

ha
l-0

04
21

28
9,

 v
er

si
on

 3
 - 

13
 O

ct
 2

01
0

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6802161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hal.archives-ouvertes.fr/hal-00421289/fr/
http://hal.archives-ouvertes.fr


Another class of spot price dynamics is represented by multifactor models. Several authors (see
[14], [4], [9], [20], [22] among others) have investigated this kind of diffusion. The logarithmic prices
or the price itself is represented by a sum of Ornstein processes in order to incorporate a mixture
of jump variations and “normal” variations. For instance, in [20] the deseasonalized spot price or
log-spot price X(t) is given by:

X(t) = Y1(t) + Y2(t)

where
dYi(t) = −λiYi(t)dt+ dLi(t), i = 1, 2.

The Ornstein Uhlenbeck (OU) component Y1 is responsible for the normal variation and is assumed
to be Gaussian, i.e. L1(t) is a Brownian motion, whereas Y2 is the Levy driven OU component
responsible for spikes, i.e. L2(t) is a jump Lévy process. In this kind of framework, the difficulty
is to detect and filter the spikes in order to estimate the jump part. Several methods have been
proposed to circumvent this problem (see e.g. [20] and [4]). For instance, [14] presents a similar
model for the spot price process that is the exponential of the sum of an Ornstein-Uhlenbeck and
an independent mean reverting pure jump process, derives its associated forward curves and finally
proposes to calibrate it to the observed forward curve at time t = 0. In order to calculate premia
of call and put options as well as path-dependent options several approximations to the probability
density function of the logarithm of the spot price process at maturity are done. In [6], the following
spot price dynamics for two energies A and B are proposed

SA(t) = ΛA(t) +

m
∑

i=1

XA
i (t) +

n
∑

j=1

Y A
j (t),

SB(t) = ΛB(t) +
m
∑

i=1

XB
i (t) +

n
∑

j=1

Y B
j (t),

where ΛA(t) and ΛB(t) are seasonal floors, XA
i and XB

i are common OU processes, i.e. they are
driven by the same jump process Li. A different approach based on copula is proposed in [5] where
the joint evolution of electricity and gas prices is modeled by a bivariate non-Gaussian OU pure
jump process with a non-symmetric copula.

In this paper, we propose an alternative class (arithmetic and geometric) of models to reproduce
adequately the statistical features of gas and electricity spot prices based on parameterized local
volatility processes. The spiky behaviour of both spot prices is captured without introducing jump

diffusion processes. More precisely, the deseasonalized (log) prices processes are modelized by the
sum of an Ornstein-Uhlenbeck process (which is common for both commodities) and an independent
stationary diffusion process. The construction of this stationary diffusion is similar to [7] where
diffusion models with linear drift and prespecified marginal distribution are investigated with an
application in a different context. The selected parameterized diffusion coefficient allows to capture
“cluster of volatility” (e.g. period of high volatility which implies prices spikes).
Moreover, this approach provides a significant advantage over the class of jump diffusion models
since the calibration process involves only classical statistical tools like least squares method and
maximum likellihood estimations so that it is robust and fast. It allows to reproduce (for the first
time to our knowledge) both the auto-correlation and the cross-correlation strutures between two
energies. The model was successfully tested on several markets and seems to fit well the statistical
features and the marginal distributions of gas and electricity spot prices.

Our results are presented as follows. Section 2 is devoted to the description of the stylised
features of gas and electricity spot prices. Then, in Section 3, we briefly recall some important
theoretical results on which are based our model. To be more precise, we recall how to construct
a mean reverting diffusion process X solution of a stochastic differential equation (SDE) with a
prespecified continuous invariant density f . Such diffusions involves parameterized local volatility
processes. In Section 4, we present the model of our choice and focus on the calibration procedure.
In the last section, we perform the calibration on the data sets coming from the NBP for the
gas spot price and the Powernext market for the electricity spot price. Then, we proceed to the
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simulation and, finally, analyze the impact of the modelization by measuring the risk of an energy
related portfolio using several models. We show that introducing the cross-commodity correlation
structure can greatly modify the risk of a portfolio.

2 Stylised features of gas and electricity spot prices

2.1 Seasonality

A first characteristic of gas and electricity (and many commodities) prices is the presence of annual
(and possibly multi-time scales) seasonality and a trend (see e.g. [12], [20]). For each commodity,
we model the seasonality and the trend component of the logarithmic spot prices with the mean
level functions around which spot prices fluctuate

log g(t) = ag + bgt+

m
∑

k=1

cgk cos

(

2πt

lk

)

+ dgk sin

(

2πt

lk

)

,

log e(t) = ae + bet+

m
∑

k=1

cek cos

(

2πt

lk

)

+ dek sin

(

2πt

lk

)

,

where lk = ⌊252/k⌋, k = 1, ...,m, ⌊x⌋ denotes the integer part of x. For instance, if we choose
m = 2, we only consider a seasonal function over the year and the semester. We assume 252 trading
days in a year except for electricity spot price on Powernext which has 365 trading days in a year
so that, we have to take into account this particularity in the seasonality function. The coefficients
above are estimated using ordinary least squares. The log-seasonality functions are represented with
the estimated values for m = 2 using gas spot price at the NBP and electricity spot price from the
Powernext market in Figure 1. All parameters are not significant at the 5% level. We only report
and take into account the significant values 1. We checked the seasonality over week, month and
quater, but the coefficients were not significant.
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Figure 1: The fitted log-seasonality functions log(g(t)) and log(e(t))

Now we focus our attention on the deseasonalized data Y g(t) := log Sg(t)− log g(t) and Y e(t) :=
logSe(t) − log e(t) for the specification of the model. A geometric model consists in modelling
the stochastic processes Y g(t) and Y e(t) whereas an arithmetic model consists in modelling the
stochastic processes eY

g(t) and eY
e(t).

1ag = 1.53, bg = 0.000688, cg1 = 0.121, dg2 = 0.0287, cg2 = 0.00533 et ae = 3.02, be = 0.000405, ce1 = 0.138, de2 =
0.0368.
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2.2 Spikes and heavy tails

Electricity has very limited storage possibilities. It induces the possibility of spikes in spot prices.
Natural gas can be stored but it is often costly, so that it shares the spiky behaviour of spot
electricity prices. Gas and electricity markets share this similarity as it can be seen in Figure 2
presenting the electricity spot prices coming from the Powernext market on the left and gas spot
prices at the National Balancing Point (NBP) on the right. From a stochastic modelling point of
view, spikes are commonly represented by jump diffusions with mean reversion. However (to the
best of our knowledge) there is no evidence that it is rather jumps than spikes caused by clusters
of volatility for instance.
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Figure 2: Electricity spot prices on the Powernext market (on the left) and gas spot prices at the
NBP (on the right) for the period 14 January 2003 till 20 August 2008.

The histograms of Y g and Y e with the fitted normal density curve is presented in Figure 3.
We observe that the two residuals time series Y g and Y e are far from being normally distributed.
The excess of kurtosis of Y g and Y e are respectively equal to 4.5 and 2.3 meaning that the two
distributions are peaked and have heavy tails. The skewness of Y g and Y e are respectively equal
to 0.77 and 0.57 meaning that the two distributions are not symmetric.
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Figure 3: Histograms of Y g and Y e with normal density curves.

2.3 Mean reversion and long term dependency

Gas and Electricity spot prices are known to be stationary. This can be tested using an augmented
Dickey-Fuller test (ADF) or the Phillips-Perron test. For the UKPX, Powernext electricity spot
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prices and gas spot prices at the NBP the unit root hypothesis was rejected using both tests.
Figure 4 shows that gas and electricity deseasonalized prices are strongly linked by a long term
dependency, i.e. it seems that there is a stochastic equilibrium between Y g(t) and Y e(t) from
which they cannot deviate for a long time. This long term dependency can be observed on the
cross-correlation function.
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Figure 4: The log-deseasonalized gas (normal line) and electricity spot (dashed line) prices

2.4 Auto-correlation and cross-correlation

In energy spot price modelling, the auto-correlation functions (ACFs) are often analyzed. The ACFs
of both Y g(t) (respectively eY

g(t)), ρg, on one hand Y e(t) (respectively eY
e(t)), ρe, on the other hand

present both a two-scale (or three-scale at most) decreasing behaviour with one quickly decreasing
component and one or two slow decreasing components. The same behaviour is observed on the
cross-correlation function (CCF) ρg,e. This kind of decreasing ACFs and CCF are well explained
by sum of decreasing exponentials components, namely for τ > 0:

ρg(τ) = Corr (Y g(t+ τ), Y g(t)) = φg
1e

−λg
1τ + (1− φg

1)e
−λg

2τ ,

ρe(τ) = Corr (Y e(t+ τ), Y e(t)) = φe
1e

−λe
1τ + (1− φe

1)e
−λe

2τ ,

ρg,e(τ) = Corr (Y g(t+ τ), Y e(t)) = φg,ee−λg,eτ .

For the sake of simplicity in our stochastic modelization, we focused on one type of cross-
correlation Corr (Y g(t+ τ), Y e(t)) and we assumed that the cross-correlation is symetric that is
Corr (Y g(t+ τ), Y e(t)) = Corr (Y e(t+ τ), Y g(t)) which is a rather natural approximation. We
observed that the slower rates of mean reversion for each commodities are quite similar λg

2 = λe
2

and that a rather good approximation is obtained by setting λg,e = λg
2 = λe

2. Using a least squares
approach, we fitted simulteanously ρg(τ), ρe(τ), ρg,e(τ) (τ = 1, ..., 150) to the empirical ACFs and
CCF. We assumed that the observed spot prices have reached the stationarity. Both empirical and
fitted ACFs2 and CCF3 are plotted in Figure 5.

We can see the separation into a fast speed of mean reversion for gas and electricity spot prices λg
1

and λe
1 which corresponds to a correlation dependence of approximately 2 and 30 days probably due

to the spikes components whereas the slower speed of mean reversion corresponds to a correlation

2φ
g
1 = 0.43, λg

1 = 7.2, and φe
1 = 0.49, λe

1 = 69.4
3φg,e = 0.53, λg

2 = λe
2 = λg,e = 2.6
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(b) ACF of Y e
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Figure 5: Empirical ACF and CCF of deseasonalized gas spot price and electricity spot price

dependence of 64 days and corresponds to the stochastic equilibrium or the normal variation of gas
and electricity spot prices.

3 Theoretical background

In order to modelize heavy tails (and spikes) of stationary spot prices distribution, a natural idea
is to consider an ergodic diffusion process like representation of deseasonalized spot prices.

In this section, we briefly recall how to construct a one dimensional process X solution of a
stochastic differential equation with a prespecified continuous invariant density f . Throughout the
sequel we assume that f is a strictly positive bounded continuous probability density on (l, r) (and
zero outside (l, r)).

3.1 The general case

Let
(

Xt

)

t>0
the diffusion solution of the following stochastic differential equation (SDE)

dXt = b(Xt)dt+ σ(Xt)dBt, X0 ∈ (l, r), (Eb,σ)

where b : (l, r) → R and σ : (l, r) → R are locally Lipschitz functions and that σ is not degenerate
on (l, r) i.e. ∀x ∈ (l, r), σ2(x) > 0. We introduce for the diffusion

(

Xt

)

t>0
, the scale function

p : (l, r) → R defined for any c ∈ (l, r) by

∀x ∈ (l, r), p(x) =

∫ x

c
exp

(

−
∫ y

c

2b(z)

σ2(z)
dz

)

dy,

and the speed measure density m : (l, r) → R∗
+ defined by

∀x ∈ (l, r), m(x) =
2

p′(x)σ2(x)
=

2

σ2(x)
exp

(
∫ x

c

2b(z)

σ2(z)
dz

)

. (1)

We recall (see e.g. [16, 17]) that the process
(

p(Xζ
t )
)

t>0
with ζ = inf {t > 0,Xt = l or Xt = r} is

a local martingale if and only if p is the scale function (unique up to an affine transformation).
Moreover, if the diffusion

(

Xt

)

t>0
is positive recurrent, the stationary probability distribution ν

defined on (l, r) satisfies

ν(dx) = Cm(x)dx with C =

(
∫ r

l
m(x)dx

)−1

.

This classical result is the key to construct a one-dimensional ergodic process that fits prescribed
stationary probability distribution. For a more general result to construct an inhomogeneous Markov
martingale process that has prespecified marginal density we refer to [19].
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Proposition 3.1. Let b : (l, r) → R be a continuous drift function. Suppose that b and f satisfy

the following conditions

∀x ∈ (l, r),

∫ x

l
b(y)f(y)dy > 0, and

∫ r

l
b(y)f(y)dy = 0, (HB)

Then there exists a unique continuous diffusion function defined by

∀x ∈ (l, r), σ(x) =

√

2

∫ x
l b(y)f(y)dy

f(x)
,

such that (Eb,σ) has a unique solution
(

Xt

)

t>0
, which is an ergodic diffusion process with stationary

distribution ν satisfying ν(dx) = f(x)dx.

Further details of the proof outlined below can be found in [7].

Proof. Let B be the function defined by B(x) =
∫ x
l b(y)f(y)dy. One checks easily that the scale

function of
(

Xt

)

t>0
satisfies

∀x ∈ (l, r), p(x) = B(c)

∫ x

c

1

B(y)
dy.

One then obtains that limx→l p(x) = −∞ and limx→r p(x) = +∞.
On the other hand, the speed measure of

(

Xt

)

t>0
has density m that satisfies

∀x ∈ (l, r), m(x) =
f(x)

B(x)p′(x)
=

f(x)

B(c)
.

The normalized speed measure density is then equal to the probability density f .
To prove existence and uniqueness of the solution

(

Xt

)

t>0
, one proves existence and uniqueness

of the process (p(Xt))t>0 satisfying a SDE without drift (see [16]).

Corollary 3.2. Let b : x ∈ (l, r) 7→ −λ(x − µ) and assume that probability density f has ex-

pectation µ and finite variance. Then there exists a unique continuous diffusion function defined

by

∀x ∈ (l, r), σ(x) =

√

∫ x
l 2λ(µ − y)f(y)dy

f(x)
,

such that (Eb,σ) has a unique solution
(

Xt

)

t>0
, which is an ergodic diffusion process with stationary

distribution ν satisfying ν(dx) = f(x)dx, and ACF given by

∀t, τ > 0, cor(Xt+τ ,Xt) = e−λτ .

The squared diffusion coefficients are explicitly known for a large number of commonly used
probability diffusions. However, for some specific distributions, it is not possible to obtain a closed
form of the diffusion coefficient. An approximation based on saddlepoint technique and the moment
generating function (which is generaly known explicitly) is developed in [7].

3.2 Quasi-Saddlepoint approximation

We first recall that saddlepoint approximations are constructed by performing various operations on
the moment generating function (MGF) of a random variable (see e.g. [8]). Let X be an absolutely
continuous random variable with density f (with respect to the Lebesgue measure on (l, r)), moment
generating function M(t) and cumulant-generating function κ(t) = logM(t). Then the first-order
saddlepoint density approximation to f is given by

∀x ∈ (l, r), f̂(x) =
(

2πκ′′(t̂x)
)−1/2

e−(t̂xx−κ(t̂x)),

7
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where t = t̂x is the (unique) solution to the saddlepoint equation κ′(t) = x, and primes denote
derivatives. We assume that the probability density f has expectation µ, i.e. µ = κ′(0).

Considering the continuous differentiable function t̂ : x 7→ t̂x, an integration by parts gives

∫ x

0
t̂(y)dy = t̂(x)x−

∫ x

0
t̂′(y)ydy,

= t̂(x)x−
∫ x

0
dκ(t̂(y)),

since y = κ′(t̂(y)). The saddlepoint density f̂ writes then

∀x ∈ (l, r), f̂(x) =
(

2πκ′′(t̂(x))
)−1/2

exp

(

−
∫ x

0
t(y)dy

)

. (2)

To construct an ergodic process
(

Xt

)

t>0
solution of (Eb,σ) with prespicified stationary density f̂ ,

the exponential terms that appear in (2) and (1) suggest the relation −2b
σ2 = t. This construction is

not exact but in [7] is proved that the speed density m of X is approximately propotional to the

saddlepoint density f̂ . To be precise both
√

κ′′(t̂(x)) and σ2(x) are approximately proportional to

κ′′(0) + 1
2κ

(3)(0)t̂(x) near the mean of the distribution. From now this normalized speed density m
will be called the quasi-saddlepoint density approximation to f .

To summarize, if the saddlepoint function t̂ is explicity known and efficiently computed, then we
consider the diffusion with drift b, such that b > 0 on (l, µ) and b < 0 on (µ, r), and with diffusion
coefficient

∀x ∈ (l, r), σ(x) =

√

−2b(x)

t̂(x)
,

which is ergodic with stationary distribution f̃(x) = c
σ2(x)

e−(xt̂(x)−κ(t̂(x))) (where c is a normalizing

factor), the quasi-saddlepoint density approximation to f (see [7] Theorem 3.1 for more details).
The following example will become useful later when we are going to modelize deseasonalized

gas and electricity spot prices.

Example 3.1. The NIG-distribution The normal-inverse Gaussian (NIG) distribution is a member
of the class of generalized hyperbolic distributions (see e.g. [3]). The NIG density is given by

f(x) =
αδK1

(

α
√

δ2 + (x− l)2
)

π
√

δ2 + (x− l)2
× eδ

√
α2−β2+β(x−l), x ∈ R,

where β ∈ R, α > |β|, δ > 0, l ∈ R and K1 is the the modified Bessel function of third order and
index 1. Note that if X ∼ NIG (α, β, δ, l) then its two first moments are

E [X] = l +
δβ

√

α2 − β2
et var(X) =

δα2

(α2 − β2)
3
2

.

The two parameters δ and l determine respectivelly the scale and the location of the law, and the
two parameters α and β determine the shape: α being responsible for the tail heavyness and β for
the skewness (asymmetry).

The cumulant-generating function κ of the NIG distribution is defined for all t such that |β+t| <
α by

κ(t) = lt+ δ
(

√

α2 − β2 −
√

α2 − (β + t)2
)

,

and the saddlepoint function is defined by

∀x ∈ R, t̂(x) =
α (x− l)

√

δ2 + (x− l)2
− β.

8
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In order to have an Ornstein process solution of (Eb,σ) with stationary density the quasi-saddlepoint
density approximation f̃ to f , we consider the following drift and diffusion functions

∀x ∈ R, b(x) = −λ (x− µ) and σ2(x) =
2λ

√

δ2 + (x− l)2 (x− µ)

α (x− l)− β
√

δ2 + (x− l)2
, (3)

with µ = l + δβ√
α2−β2

.

4 Cross-commodity multi-factor model

In this section, we present two class of cross-commodity multi factor models: the geometric and
the arithmetic class. Those two class are commonly used in stochastic modelling of commodity
prices. The first one ensures the positivity of simulated spot prices. However, when dealing with
forward contracts which have a delivery period or options pricing, the second one is analytically
more tractable. Both class of models are based on stationary diffusion-type models analyzed in [7].

4.1 Proposed modelization

In this section, we propose an alternative model which captures the stylized features described in
Section 2 without introducing jump diffusions. Sums of this kind of diffusions can fit the multi-scale
ACFs and the CCF obtained for the deseasonalized gas and electricity spot prices.

In order to represent the ACFs and CCF of gas and electricity deseasonalized spot prices, we
are led to introduce stochastic processes that are sums of diffusions defined by (Eb,σ). To be more
precise, we focus on the following two factor modelization for the deseasonalized log spot prices Y g

and Y e

Y g
t = Xg

t + Zt, and Y e
t = Xe

t + Zt, (4)

where
(

Zt

)

t>0
,
(

Xg
t

)

t>0
and

(

Xe
t

)

t>0
are mutually independant processes defined as following:

• the process
(

Zt

)

t>0
accounts for the stochastic equilibrium between both commodities with a

slow rate of mean reversion λz = λg
2 = λe

2. Thus, it represents the normal variation and will
be defined by an Ornstein-Uhlenbeck process

dZt = −λzZtdt+ σzdW
z
t , (5)

with λz > 0 and σz ∈ R. Note that Z is ergodic with the Gaussian invariant probability
N

(

0, σ2
z/2λz

)

.

• the processes
(

Xg
t

)

t>0
and

(

Xe
t

)

t>0
represent the spikes component for each commodity. We

modelize them by general Ornstein processes with high rate of mean reversion λg = λg
1 > 0

and λe = λe
2 > 0, namely

dXj
t = −λj

(

Xj
t − µj

)

dt+ σj(X
j
t ; θj)dW

j
t , j = g, e, (6)

where σj is a parametric diffusion function such that
(

Xg
t

)

t>0
is an ergodic diffusion with

invariant probability f j(., θj).

Remark 4.1. The following contruction can be extended to a more general multi-factor model.
We can consider m general Ornstein processes and p Ornstein-Uhlenbeck processes so that

Y g(t) =
m
∑

i=1

Xg
i (t) +

p
∑

j=1

Zj(t),

Y e(t) =

m
∑

i=1

Xe
i (t) +

p
∑

j=1

Zj(t),

where all processes are assumed to be mutually independent, i.e. driven by independent Wiener
processes. We already observed that a two-factor model (m = 1 and p = 1) fits the ACFs and CCF
well.
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Proposition 4.1 (The correlation structures). Let Y g, Y e be the processes defined in (4). Then,

the ACFs of Y g and Y e with lag τ > 0 are given by

ρg(τ) = cor
(

Y g
t+τ , Y

g
t

)

= φge
−λgτ + (1− φg)e

−λzτ ,

ρe(τ) = cor
(

Y e
t+τ , Y

e
t

)

= φee
−λeτ + (1− φe)e

−λzτ ,

where

φg =
Var (Xg(t))

Var (Y g(t))
, and φe =

Var (Xe(t))

Var (Y e(t))
.

The CCF with lag τ > 0 is given by

ρg,e(τ) := cor
(

Y g
t+τ , Y

e
t

)

= φg,e e−λzτ ,

with, φg,e =
Var(Z(t))√

Var(Y g(t))Var(Y e(t))
.

From the definition of φg,e, we find that σ2
z = 2λzφg,e

√

Var (Y g(t)) Var (Y e(t)), where the last
term is the product of the two stationary variance of the two processes. Consequently, one can
easily derive σz from the ACFs and CCF calibration.

4.2 Calibration

We propose a three-step calibration procedure for the model described above.

Step 1: Deseasonalizing spot prices

We fit the seasonality functions g(t) and e(t) defined in section 2.1 to the logarithmic spot prices.
The parameters of the functions are estimated using the least squares approach. Now, we focus on
the deseasonalized spot prices Y g and Y e defined by

Y g(t) = log (Sg(t))− log (g(t)) and Y e(t) = log (Se(t))− log (e(t)) .

One can consider the deseasonalized spot prices eY
g(t) and eY

e(t) instead of this geometric approach.

Step 2: ACFs and CCF

The least squares method consists in fitting the empirical ACFs ρg(τ), ρe(τ) and CCF ρg,e(τ) defined
in section 2.4 to the empirical ones (ρ̃g(τ))τ=1,...,l, (ρ̃

e(τ))τ=1,...,l, (ρ̃
g,e(τ))τ=1,...,l in order to derive

the three speeds of mean reversion λg
1, λe

1, λz with the diffusion coefficient σz of the stochastic
equilibrium process Z. This can be done by minimizing the sum of squared differences, namely

argmin
λg ,λe,λz ,σz

l
∑

τ=1

(

(ρg(τ)− ρ̃g(τ))2 + (ρe(τ)− ρ̃e(τ))2 + (ρg,e(τ)− ρ̃g,e(τ))2
)

.

Stability tests showed that the estimates are robust with respect to small changes in the initial
values of the parameters.

Step 3: Estimating the parameters of the spikes component

The final step consists in statiscally estimating the parameters θg of the invariant density f g(., θg)
of the process Xg and the parameters θe of the invariant density f e(., θe) of the process Xe. For
instance, if one decide to choose the quasi-saddlepoint approximation to the NIG density for f g and
f e, there will be four parameters to fit for each density. The model proposed is a sum of diffusion
processes and hence is not Markovian. Thus, the likelihood cannot be written down explicitly. To
overcome this problem, we use the maximum likelihood estimation of order m (m = 0 or m = 1 in
our case) method for stationary processes introduced in [1]. Strong consistency and a Central Limit
Theorem are proved for such estimates. It consists in approximating the log-likelihood of the serie
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(yjk)1≤k≤n (j = g, e), where n is the number of sample points, by a sum whose generic term is the

density function of Y j
k conditional on the m most recent observations, for some m ≥ 0, namely,

ℓjm(θ) =

n
∑

k=1

log
(

hj(yjk | yj,mk ; θj)
)

, (7)

where yj,mk := (yjk−m, · · · , yjk−1) and hj(. | yj,mk ; θj) is the conditional probability density function

of Y j
k given Y j,m

k = yj,mk for the parameters θj. Note that if m = 0, there is no conditioning

and hj is simply the marginal density of Y j
k , k = 1, · · · , n, which is the convolution of Zk and

Xj
k. We suppose that (Xj

k)1≤k≤n (resp. (Zk)1≤k≤n) is ergodic with stationary distribution f j(.; θj)
(resp. with Gaussian invariant probability N

(

0, σ̃Z
2 := σ2

z/2λz

)

) so that the conditional probability
density function is given by

hj(yjk; θj) =

∫ +∞

−∞
f j

(

yjk −
σZ√
λZ

u; θj

)

e−u2

√
π
du, j = g, e. (8)

Note that it corresponds to the case of (Y j
k )1≤k≤n is independent and identically distributed random

variables having the distribution of the stationary distribution of Y j.
Numerically, the above integral can be approximated using a Gauss-Hermite quadrature method,

namely

hj(yjk; θj) ≈
1√
π

n
∑

k=1

f j

(

x− σZ√
λZ

uk; θj

)

wk, j = g, e,

where (uk)16k6n are the roots of the Hermite polynomial Pn and (wk)1≤k≤n are the associated
weights given by

wk =
2n−1n!

√
π

n2(P ′
n−1(yk))

2
, k = 1, ..., n.

If m = 1, we need to compute the transition probability density p
Y j
k+1|Y

j
k
=yk

(.; θj) of
(

Y j
t

)

t>0
for

j = g, e. The two series (Xj
k)1≤k≤n and (Zk)1≤k≤n are discrete observations of (6) and (5). Let g

be a Borel bounded test function and k ∈ 1, · · · , n − 1, by conditioning we have

E

[

g(Y j
k+1) | Y

j
k = yk

]

=

∫

R

E

[

g(Y j
k+1) | Y

j
k = yk, Zk = z

]

P

(

Zk = z | Y j
k = y

)

dz.

=

∫

R

E

[

g(Xj
k+1 + Zk+1) | Y j

k = yk, Zk = z
]

P

(

Zk = z | Y j
k = y

)

dz.

Note that the two processes Xj and Z are independent so that if we denote by p
Xj

k

(xjk, .) :=

pX(tk, tk+1, x
j
k, .) and pZk

(zk, .) := pZ(tk, tk+1, zk, .), the conditional probability density functions of

Xj
k+1 and Zk+1 given Zk = z, Xj

k = xjk, the expectation E

[

g(Xj
k+1 + Zk+1) | Yk = yjk, Zk = z

]

is

given by
∫

R

g(u)

∫

R

p
Xj

k

(yjk − z, v)pZk
(z, u− v)dvdu.

Moreover, we have

P

(

Zk = z | Y j
k = yjk

)

=
P

(

Zk = z, Y j
k = yjk

)

P

(

Y j
k = yjk

) =
P (Zk = z)P

(

Xj
k = yjk − z

)

P

(

Y j
k = yjk

) ,

where,

P

(

Y j
k = yjk

)

=

∫ +∞

−∞
f j

(

yjk − u; θj

) 1√
2πσ̃Z

e
− 1

2σ̃2
Z

u2

du,

11
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and P

(

Xj
k = yjk − z

)

= f j
(

yjk − z; θj

)

, P (Zk = z) = 1√
2πσ̃Z

e
− 1

2σ̃2
Z

z2

. Finally, one easily identifies

the transition probability density p
Y j

k+1|Y
j

k
=yj

k

(y; θj) which is given by

∫

R

(
∫

R

p
Xj

k

(yjk − z, v)pZk
(z, u − v)dv

)

1√
2πσ̃Z

f j
(

yjk − z; θj

)

e
− 1

2σ̃2
Z

z2

P

(

Y j
k = yjk

) du.

Note that we have pZk
(zk, z) =

1√
2πσ̄Z

e
− 1

2σ̄2
Z

z2

, with σ̄Z = σZ

√

1−e−2λZ∆

2λZ
using an exact scheme of

the Ornstein-Uhlenbeck process (Zk)1≤k≤n of step ∆ > 0, namely

Zk+1 = e−λz∆Zk + σZ

√

1− e−2λZ∆

2λZ
Gz

k+1, (9)

where (Gz
k)k≥1 is a sequence of i.i.d. standard normal random variables. However, in most cases,

there is no closed expression for p
Xj

k

(xjk, .). To overcome this problem one solution is to consider

the transition probability density function p
X̄j

k

(xjk, .) of the Euler scheme
(

X̄j
k

)

k≥0

X̄j
k+1 = e−λj∆X̄j

k + µj

(

1− e−λj∆
)

+ σj

(

X̄j
k; θj

)

√

1− e−2λj∆

2λj
Gj

k+1, k ≥ 0 (10)

where
(

Gj
k

)

k≥1
is a sequence of i.i.d. standard normal random variables independent of (Gz

k)k≥1.

Consequently, p
X̄j

k

(xjk, .) = 1√
2πσ̄j(x

j
k
;θj)

e
− 1

2σ̄2
j
(x

j
k
;θj)

x2

, with σ̄j(x
j
k; θj) = σj

(

x̄jk; θj

)
√

1−e−2λj∆

2λj
so

that we have

∫

R

p
X̄j

k

(yjk − z, v)pZk
(z, u− v)dv =

1√
2πσ̃(yjk, z; θ

j)
e
− 1

2σ̃2(y
j
k
,z;θj)

(u−mj
k)

2

,

where for k ∈ {1, · · · , n}, mj
k = e−λZ∆z + e−λj∆(yjk − z) + µj(1 − e−λj∆) and σ̃2(yjk, z; θ

j) =

σ̄2
j

(

yjk − z; θj

)

+ σ̄2
Z .

Remark 4.2. In [10], a transition probability density function based on Milstein scheme is used.
In [18], a gaussian transition probability density function with Taylor expansions is used to propose
an efficient estimator for θj.

The method of maximum likelihood of order m estimates θ̂j,m by finding the value of θj that
maximizes (7) using standard numerical optimization procedure.

5 Simulation and application

5.1 Empirical results on Powernext and NBP spot prices

In this section, we perform the calibration procedure on electricity spot prices coming from the
Powernext market and on gas spot prices at the NBP. Then, we perform a simulation with estimated
parameters over the same period. To avoid negative prices, we choose to represent spot prices by
an arithmetic model, namely

Sg(t) = g(t)× eX
g(t)+Z(t), (11)

Se(t) = e(t)× eX
e(t)+Z(t), (12)

where g(t), e(t) are the trend and seasonality functions defined in Section 2.1, Xg, Xe are solutions
of (Eb,σ) with b and σ defined in (3) and Z is a Gaussian Ornstein-Uhlenbeck process solution of
(5).
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We choose the NIG distribution for those two processes in order to capture the heavy tails
behavior observed on data, i.e. large values with low probability that cannot be obtained by a
Gaussian process. We observed that the quasi-saddlepoint approximation of the NIG-distribution
is well suited to represent the two spike components. One can choose another distribution and devise
the same calibration process as in the previous section. The results of steps 1 and 2 of the calibration
procedure are reported in Figure 1 and the quality of the ACFs and CCF fits is represented in Figure
5. Now, we proceed to the estimation of the four parameters θg = (αg, βg, δg, lg) of the process
Xg and the four parameters θe = (αe, βe, δe, le) of the process Xe using the maximum likelihood
estimation method described in the previous section on the deseasonalized spot prices. We observed
that the maximum likelihood estimation method of order 04 is more robust and gives better results
than the one of order 15. The initial parameters are set to (1, 0, 1, 0) for both components.

The algorithms converged quickly. The diffusion coefficient functions σ̃j(., θj), j = g, e, with the
fitted parameters, are documented in Figure 6. We see that the shape of the diffuion coefficients
are quite similar for the gas and electricity spot deseasonalized spot prices. Spikes are obtained
when the processes Y g and Y e are far from their mean by clusters of volatility, i.e. periods of
high volatility. As we see, large values are more likely and the asymmetry is more pronounced for
electricity spot prices than for gas spot prices. We clearly see spikes as cluster of volatility are more
probable and more intense for electricity deseasonalized spot prices than for gas deseasonalized spot
prices.

−2 −1 0 1 2
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6

Diffusion coefficient for gas

x
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ef

f d
iff

us

−2 −1 0 1 2

5
10
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x

co
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f d
iff
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Figure 6: Squared diffusion coefficients using fitted parameters with maximum likelihood estimation
of order 0 (normal lines) and of order 1 (dashed lines).

In order to simulate price trajectories, we consider the Euler-Maruyama schemes defined by
(10) and (9). If one is concerned by estimating some quantities (for instance quantiles) on only
one trajectory then one should replace the above Euler schemes of Xg and Xe with their respective
Milstein schemes X̃g and X̃e in order to achieve a smaller strong error rate. It consists in devising
the following schemes for j = g, e,

X̃j
tk+1

= e−λj(tk+1−tk)

(

X̃j
tk
+

(

µjλj −
1

2
σjσj

′

(X̃j
tk
; θj)

)

∆

)

+ σj

(

X̄j
tk
; θj

)

√

1− e−2λj∆

2λj
Gj

k+1 +
1

2
σjσj

′

(X̃j
tk
; θj)

(

Gj
k+1

)2
, X̃j

0 = xj0,

where σj
′

is the first derivative of σj.

4Fitted parameters of order 0 are: αg = 1.93, βg = 0.90, δg = 2.25e − 3, lg = −8.8e − 3 and αe = 3.49, βe = 1.24,
δe = 0.08, le = 0.11.

5Fitted parameters of order 1 are: αg = 0.76, βg = 7.8e − 2, δg = 7.8e − 4, lg = −0.11 and αe = 1.56, βe = 0.34,
δe = 1.1e − 2, le = 0.16
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In the following simulations, we consider Milstein schemes of step tk = k∆, with ∆ = 1
252 .

Next, we add to the simulated processes the two seasonality functions. In Figure 7, the simulated
deseasonalized spot prices are represented. We see that both commodities are strongly linked and
that the model mimics the statistical behaviour of the deseasonalized spot prices. In Figure 8, the
simulated spot prices are represented. In Figure 9, both simulated and historical ACFs and CCF
are plotted. We clearly see that the model reproduces the correlation structures.
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Figure 7: A simulation of gas (normal line) and electricity (dotted line) deseasonalized spot prices.
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Figure 8: Simulated Electricity spot prices on the Powernext market on the left and Gas spot prices
at the NBP on the right for the period 14 January 2003 till 20 August 2008.

5.2 Application: measuring risk of a cross-commodity portfolio

In this section, we aim at measuring the risk of a portfolio composed of a short position in a power
plant that produces electricity from gas day by day t1 < ... < tN for several maturities T = tN = 6
months, 1 year and 3 years. The loss at time 0 of the portfolio with a time horizon T can be written

LT =

N
∑

k=1

e−rtk
(

Se
tk
− hRS

g
tk
− C

)

+
− P c

T ,

where r = 5% is the annual interest rate, hR = 3 denotes the Heat Rate, C = 5 e/MWh denotes
the generation costs and where P c

T is an estimation of the price of the option on the power plant
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(a) ACF of one simulation of Y g
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(b) ACF of one simulation of Y e
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Figure 9: ACFs and CCF of simulated gas and electricity spot prices (normal lines) with the
historical ACFs and CCF (dotted lines).

obtained by a crude Monte Carlo simulation, namely

P c
T ≈

N
∑

k=1

e−rtkE
[

(

Se
tk
− hRS

g
tk
− C

)

+

]

.

Since gas and electricity markets are incomplete, we price and estimate risk measures under the
historical probability. In order to measure the risk, we consider the Value-at-Risk (VaR), which is
certainly the most commonly used risk measures in the context of risk management. By definition,
the Value-at-Risk at level α ∈ (0, 1) (VaRα) of a given portfolio is the lowest amount not exceeded
by its loss with probability α. In this example, we set α = 95%. Actually, for the considered
portfolio, the VaRα is the unique solution ξ of the equation

P [LT ≤ ξ] = α.

The portfolio’s VaRα is just a quantile of its loss and is interpreted as a reasonable worst case level.
Now, we are interested in measuring the impact of the proposed model for gas and electricity

spot prices on the portfolio’s VaR. In order to do that, we consider three different models:

• Case 1: the mean-reverting cross-commodity model (in its geometric form) proposed in this
paper and defined by (11) and (12). It modelizes typical features of gas and electricity spot
prices likes spikes and the long term dependency.
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Maturity P c
T (±Error) VaRα

Case 1
(Proposed model)

6 months 83.3 (±3.3) 262.4
1 year 220.1 (±5.5) 495.4
3 years 745.0 (±11.2) 1081.0

Case 2
(No cross-correlation)

6 months 51.2 (±2.9) 250.1
1 year 222.6 (±8.4) 880.2
3 years 850.6 (±21.3) 2213.1

Case 3
(Gaussian model)

6 months 32.9 (±1.1) 107.7
1 year 129.8 (±2.7) 275.9
3 years 437.1 (±5.8) 565.5

Table 1: Estimation of the price of the Power plant and the VaRα of the portfolio.

• Case 2: a slight modification of the previous model in which we do not take into account
the dependence of the two energy spot prices. To be more precise, we consider the following
model specification

Sg(t) = g(t) × eX
g(t)+Zg(t),

Se(t) = e(t) × eX
e(t)+Ze(t),

where Xg and Xe are solutions of (Eb,σ) with b and σ defined in (3), and where Zg, Ze are
two independant Gaussian OU processes solution of (5). By this model, we want to measure
the impact on the VaRα of the long term dependency modeling. The calibration process is
slightly modified since Sg and Se are now independent. The step 2 is replaced by two different
minimizations corresponding to each ACF. Steps 1 and 3 remain unchanged.

• Case 3: a slight modification of the case 1 in which we do not modelize the spikes feature. To
be more precise, we replace the NIG-distributed processes by Gaussian Ornstein-Uhlenbeck
processes, namely

Sg(t) = g(t)× eZ
g(t)+Z(t),

Se(t) = e(t)× eZ
e(t)+Z(t),

where Zg, Ze, Z are three different Gaussian OU processes solution of (5). By this model,
we want to quantify the impact on the VaRα of the spike feature of gas and electricity spot
prices.

In each case, we estimate P c
T and the VaRα using 10 000 Monte Carlo simulations. We devise

Euler schemes of step tk = k∆ with ∆ = 1
252 . In order to estimate the VaRα, we use the inversion

of the simulated empirical distribution function.

Remark 5.1. Since gas and electricity spot prices are sums of diffusion processes solution of (Eb,σ),
one can easily use the method investigated in [11] to estimate the VaRα and other risk measures. It
is based on stochastic approximation algorithms with an adaptive variance reduction tool (uncon-
strained importance sampling algorithm). The method is known to achieve good variance reduction
when α ≈ 1 as it is often the case. For the sake of simplicity, we only considered the classical
method based on the inversion of the empirical distribution function.

The results are summarized in Tables 1. Note that for each case, the estimations are computed
using the same pseudo-random number generator initialized with the same seed. The number in
parentheses refers to the 95% confidence level.

We observe that there are slight differences in terms of the price P c
T between the case 1 and 2

but huge differences in terms of risk. Taking into account the long term correlation between gas and
electricity spot prices can reduce substantially the risk of this portfolio. Modeling independently
each energy spot prices leads to an overestimation of the VaRα of the portfolio’s loss. The results
obtained by using the model investigated in case 3 shows that introducing the spikes behavior into
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the model can increase greatly both P c
T and the risk of the portfolio. We also estimated the same

quantities using the arithmetic version of the three models presented above. We obviously obtained
different values from the ones presented but the same conclusions hold: modeling adequatly the cross
correlation between gas and electricity spot prices reduces the risk of portfolio whereas modeling
adequatly the spiky behavior of both commodities increases greatly the price of the option and the
risk associated to the portfolio.
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