
Unconstrained Recursive Importance Sampling

Vincent Lemaire, Gilles Pagès

To cite this version:

Vincent Lemaire, Gilles Pagès. Unconstrained Recursive Importance Sampling. Annals of
Applied Probability, Institute of Mathematical Statistics (IMS), 2010, 20 (3), 1029-1067 ;
http://dx.doi.org/10.1214/09-AAP650. <10.1214/09-AAP650>. <hal-00293466v3>

HAL Id: hal-00293466

https://hal.archives-ouvertes.fr/hal-00293466v3

Submitted on 8 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Unconstrained Recursive Importance Sampling

Vincent Lemaire and Gilles Pagès ∗

June 8, 2009

Abstract

We propose an unconstrained stochastic approximation method of finding the optimal mea-
sure change (in an a priori parametric family) for Monte Carlo simulations. We consider different
parametric families based on the Girsanov theorem and the Esscher transform (or exponential-
tilting). In a multidimensional Gaussian framework, Arouna uses a projected Robbins-Monro
procedure to select the parameter minimizing the variance (see [2]). In our approach, the param-
eter (scalar or process) is selected by a classical Robbins-Monro procedure without projection
or truncation. To obtain this unconstrained algorithm we intensively use the regularity of the
density of the law without assume smoothness of the payoff. We prove the convergence for a
large class of multidimensional distributions and diffusion processes.

We illustrate the effectiveness of our algorithm via pricing a Basket payoff under a multidi-
mensional NIG distribution, and pricing a barrier options in different markets.

Key words: Stochastic algorithm, Robbins-Monro, Importance sampling, Esscher transform, Gir-
sanov, NIG distribution, Barrier options.
2000 Mathematics Subject Classification: 65C05, 65B99, 60H35.

1 Introduction

The basic problem in Numerical Probability is to optimize some way or another the computation
by a Monte Carlo simulation of a real quantity m known by a probabilistic representation

m = E[F (X)]

where X : (Ω,A,P) → (E, | . |E) is a random vector having values in a Banach space E and
F : E → R is a Borel function (and F (X) is square integrable). The space E is Rd but can also be
a functional space of paths of a process X = (Xt)t∈[0,T ]. However, in this introduction section, we

will first focus on the finite dimensional case E = Rd.
Assume that X has an absolutely continuous distribution P

X
(dx) = p(x)λd(dx) (λd denotes

the Lebesgue measure on (Rd,Bor(Rd))) and that F ∈ L2(P
X

) with P(F (X) 6= 0) > 0 (otherwise
the expectation is clearly 0 and the problem is meaningless). Furthermore we assume that the
probability density p is everywhere positive on Rd.

The paradigm of importance sampling applied to a parametrized family of distributions is the
following: consider the family of absolutely continuous probability distributions πθ(dx) := pθ(x)dx,
θ ∈ Θ, such that pθ(x) > 0, λd(dx)-a.e. . One may assume without loss of generality that Θ is
an open non empty connected subset of Rq containing 0 so that p0 = p. In fact we will assume
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throughout the paper that Θ = Rq. Then for any Rd-valued random variable X(θ) with distribution
πθ, we have

E[F (X)] = E

[
F (X(θ))

p(X(θ))

pθ(X(θ))

]
. (1.1)

Among all these random variables having the same expectation m = E[F (X)], the one with
the lowest variance is the one with the lowest quadratic norm: minimizing the variance amounts
to finding the parameter θ∗ solution (if any) to the following minimization problem

min
θ∈Rq

V (θ)

where, for every θ∈ Rq,

V (θ) := E

[
F 2(X(θ))

p2(X(θ))

p2
θ(X

(θ))

]
= E

[
F 2(X)

p(X)

pθ(X)

]
≤ +∞. (1.2)

A typical situation is importance sampling by mean translation in a finite dimensional Gaussian
framework i.e.

X(θ) = X + θ, p(x) =
e−

|x|2

2

(2π)
d
2

, pθ(x) = p(x− θ) and V (θ) = e−|θ|2
E

[
F 2(X)e−2〈θ,X〉

]
.

Then the second equality in (1.2) is simply the Cameron-Martin formula. This specific framework is
very important for applications, especially in Finance, and was the starting point of the new interest
for recursive importance sampling procedures, mainly initiated by Arouna in [2] (see further on).
In fact, as long as variance reduction is concerned, one can consider a more general framework
without extra effort. As a matter of fact, if the distributions pθ satisfy





(i) ∀x∈ Rd, θ 7→ pθ(x) is log-concave

(ii) ∀x∈ Rd, lim|θ|→+∞ pθ(x) = 0, or ∀x ∈ Rd, lim|θ|→+∞
pθ(x)
p2

θ/2
(x)

= 0,
(H1)

and F satisfies E

[
F 2(X) p(X)

pθ(X)

]
< +∞ for every θ ∈ Rq, then (see Proposition 1 below), the

function V is finite, convex, goes to infinity at infinity. As a consequence ArgminV = {∇V = 0}
is non empty. Assumption (ii) can be localized by by considering that one the two conditions
holds only on a Borel set C of Rd such that P

X
(C ∩ {F 6= 0}) > 0. If θ 7→ pθ(x) is strictly

log-concave for every x in a Borel set B such that PX [B ∩ {F 6= 0}] > 0, then V is strictly convex
and ArgminV = {∇V = 0} is reduced to a single θ∗ ∈ Rq. These results follow from the second
representation of V as an expectation in (1.2) which is obtained by a second change of probability
(the reverse one). For notational convenience we will temporarily assume that ArgminV = {θ∗}
in this introduction section, although our main result needs no such restriction.

A classical procedure to approximate θ∗ is the so-called Robbins-Monro algorithm. This is a
recursive stochastic algorithm (see (AlgoRM) below) which can be seen as a stochastic counterpart
of deterministic recursive zero search procedures like the Newton-Raphson one. It can be formally
implemented provided the gradient of the (convex) target function V admits a representation as
an expectation. Since we have no a priori knowledge about the regularity of F (1) and do not wish

1When F is smooth enough alternative approaches have been developed based on some large deviation estimates
which provide a good approximation of θ

∗ by deterministic optimization methods (see [10]).

2



to have any, we are naturally lead to formally differentiate the second representation of V in (1.2)
to obtain a representation of ∇V as

∇V (θ) = E

[
F 2(X)

p(X)

pθ(X)

∇θ pθ(X)

pθ(X)

]
. (1.3)

Then, if we consider the function H̄V (θ, x) such that ∇V (θ) = E
(
H̄V (θ,X)

)
naturally defined

by (1.3), the derived Robbins-Monro procedure writes

θn+1 = θn − γn+1H̄V (θn,Xn+1), (AlgoRM)

with (γn)n≥0 a step sequence decreasing to 0 (at an appropriate rate), (Xn)n≥0 a sequence of i.i.d.
random variables with distribution p(x)λd(dx). To establish the convergence of a Robbins-Monro
procedure to θ∗ = ArgminV requires seemingly not so stringent assumptions. We mean by that:
not so different from those needed in a deterministic framework. However, one of them turns out
to be quite restrictive for our purpose: the sub-linear growth assumption in quadratic mean

∀θ∈ R
d,

∥∥H̄V (θ,X)
∥∥
2
≤ C(1 + |θ|). (NEC)

which is the stochastic counterpart of the classical non-explosion condition needed in a determin-
istic framework. In practice, this condition is almost never satisfied in our framework due to the
behaviour of the term p(x)

pθ(x) as θ goes to infinity.

The origin of recursive importance sampling as briefly described above goes back to Kushner
and has recently been brought back to light in a Gaussian framework by Arouna in [2]. However,
as confirmed by the numerical experiments carried out by several authors ([2, 12, 14]), the regular
Robbins-Monro procedure (AlgoRM) does suffer from a structural instability coming from the
violation of (NEC). This phenomenon is quite similar to the behaviour of the explicit discretization
schemes of an ODE ≡ ẋ = h(x) when h has a super-linear growth at infinity. Furthermore,
in a probabilistic framework no “implicit scheme” can be devised in general. Then the only way
out mutatis mutandis is to kill the procedure when it comes close to explosion and to restart it
with a smaller step sequence. Formally, this can be described as some repeated projections or
truncations when the algorithm leaves a slowly growing compact set waiting for stabilization which
is shown to occur a.s.. Then, the algorithm behaves like a regular Robbins-Monro procedure. This
is the so-called “Projection à la Chen” avatar of the Robbins-Monro algorithm, introduced by Chen
in [6, 7] and then investigated by several authors (see e.g. [1, 14]) Formally, repeated projections
“à la Chen” can be written as follows:

θn+1 = ΠKσ(n)

{
θn − H̄V (θn,Xn+1)

}
(AlgoP)

where ΠKσ(n)
denotes the projection on the convex compact Kσ(n) (Kp is increasing to Rd as

p → ∞). In [14] is established a a Central Limit Theorem for this version of the recursive vari-
ance reduction procedure. Some extensions to non Gaussian framework have been carried out by
Arouna in his PhD thesis (with some applications to reliability) and more recently to the marginal
distributions of a Lévy processes by Kawai in [12].

However, convergence occurs for this procedure after a long “stabilization phase” . . . provided
that the sequence of compact sets have been specified in an appropriate way. This specification
turns out to be a rather sensitive phase of the “tuning” of the algorithm to be combined with that
of the step sequence.

In this paper, we show that as soon as the growth of F at infinity can be explicitly controlled, it
is always possible to design a regular Robbins-Monro algorithm which a.s. converges to a variance
minimizer θ∗ with no risk of explosion (and subsequently no need of repeated projections).
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To this end the key is to introduce a third change of probability in order to control the term
p(x)
pθ(x) . In a Gaussian framework this amounts to switching the parameter θ from the density p to

the function F by a third mean translation. This of course corresponds to a new function H̄V but
can also be interpreted a posteriori as a way to introduce an adaptive step sequence (in the spirit
of [15]).

In terms of formal importance sampling, we introduce a new positive density qθ (everywhere
positive on {p > 0}) so that the gradient writes

∇V (θ) = E

[
F 2(X̃(θ))

p2(X̃(θ))

pθ(X̃(θ))qθ(X̃(θ))

∇pθ(X̃(θ))

pθ(X̃(θ))

]
= E

[
H̃V (θ, X̃(θ))

]
, (1.4)

where X̃(θ) ∼ qθ(x)dx. The “weight”
p2(X̃(θ))

pθ(X̃(θ))qθ(X̃(θ))

∇pθ(X̃(θ))

pθ(X̃(θ))
may seem complicated but the

rôle of the density qθ is to control the critical term p2(x)
pθ(x)qθ(x) by a (deterministic) quantity only

depending on θ. Then we can replace H̃V by a function H(θ, x) = δ(θ) H̃V (θ, x) in the above
Robbins-Monro procedure (AlgoRM) where δ is a positive function used to control the behaviour
of H̃V (θ, x) for large values of x (note that

{
E
[
H(., X̃(θ))

]
= 0
}

= {∇V = 0}).
We will first illustrate this paradigm in a finite dimensional setting with parametrized impor-

tance sampling procedures: the mean translation and the Esscher transform which coincide for
Gaussian vectors on which a special emphasis will be put. Both cases correspond to a specific
choice of qθ which significantly simplifies the expression of the weight.

As a second step, we will deal with an infinite dimensional setting (path-dependent diffusion
like processes) where we will rely on the Girsanov transform to play the role of mean translator. To
be more precise, we want now to compute E[F (X)] where X is a path-dependent diffusion process
and F is a functional defined on the space C([0, T ],Rd) of continuous functions defined on [0, T ].
We consider a d-dimensional Itô process X = (Xt)t∈[0,T ] solution of the path-dependent SDE

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, X0 = x∈ R
d, (Eb,σ,W )

where W = (Wt)t∈[0,T ] is a q-dimensional standard Brownian motion, Xt := (Xt∧s)s∈[0,T ] is the

stopped process at time t, b : [0, T ] × C([0, T ],Rd) → Rd and σ : [0, T ] × C([0, T ],Rd) → M(d, q)
are Lipschitz with respect to the ‖ . ‖

∞
on the space C([0, T ],Rd) and continuous in (t, x)∈ [0, T ]×

C([0, T ],Rd) (see [18] for more details about these path-dependent SDE’s).
Let ϕ be a fixed borel bounded functional on C([0, T ],Rd) with values in M(q, p) (where p ≥

1 is a free integral parameter). Then a Girsanov transform yields that for every θ ∈ L2
T,p :=

L2([0, T ],Rp),

E[F (X)] = E

[
F (X(θ))e

−
R T
0 〈ϕ(X(θ),s)θ(s),dWs〉− 1

2‖ϕ(X(θ),.)θ‖2

L2
T,q

]

where X(θ) is the solution to (Eb+σϕθ,σ). The functional to be minimized is now

V (θ) = E

[
F (X(θ))2e

−2
R T
0
〈ϕ(X(θ),s)θ(s),dWs〉−‖ϕ(X(θ),.)θ‖2

L2
T,q

]
, θ∈ L2

T,p.

In practice we will only minimize V over a finite dimensional subspace of E = span{e1, . . . , em} ⊂
L2
T,p.
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The paper is organized as follows. Section 2 is devoted to the finite dimensional setting where we
recall the main tool including a slight extension of the Robbins-Monro theorem in the Subsection 2.1
and the gaussian case investigated in [2] is revisited to emphasize the new aspects of our algorithm
in the Subsection 2.2.

In Section 2 we successively investigate the translation for log-concave distributions probability
and the Esscher transform. In Section 3 we introduce a functional version of our algorithm based
on the Girsanov theorem to deal the SDE. In Section 4 we provide some comments on the practical
implementation and in Section 5 some numerical experiments are carried out on some option pricing
problems.

Notations: • We will denote by S > 0 the fact that a symmetric matrix S is positive definite. | . |
will denote the canonical Euclidean norm on Rm and 〈 ., . 〉 will denote the canonical inner product.
• The real constant C > 0 denotes a positive real constant that may vary from line to line.

• ‖f‖
L2

T,p
:=
(∫ T

0 f2
1 (t) + · · · + f2

p (t)dt
) 1

2
if f = (f1, . . . , fp) is an Rp-valued (class of) Borel func-

tion(s).

2 The finite-dimensional setting

2.1 ArgminV as a target

Proposition 1 Suppose (H1) holds.
Then the function V defined by (1.2) is convex and lim|θ|→+∞ V (θ) = +∞. As a consequence

ArgminV = {∇V = 0} 6= ∅.

Proof. By the change of probability dπθ
dλd

we have V (θ) = E

[
F 2(X) p(X)

pθ(X)

]
. Let x fixed in Rd. The

function (θ 7→ log pθ(x)) is concave, hence log(1/pθ(x)) = − log pθ(x) is convex so that, owing to
the Young Inequality, the function 1

pθ(x) is convex since it is non-negative.

To prove that V tends to infinity as |θ| goes to infinity, we consider two cases:

– If lim
|θ|→+∞

pθ(x) = 0 for every x ∈ Rd, the result is trivial by Fatou’s Lemma.

– If lim
|θ|→+∞

pθ(x)

p2
θ/2(x)

= 0 for every x ∈ Rd, we apply the reverse Hölder inequality with conjugate

exponents (1
3 ,−1

2) to obtain

V (θ) ≥ E

[
F 2/3(X)

( p2
θ/2(X)

p(X)pθ(X)

) 1
3

]3

E

[(
p(X)

pθ/2(X)

)−1
]−2

,

≥ E

[
F 2/3(X)

( p2
θ/2(X)

p(X)pθ(X)

) 1
3

]3

,

(p and pθ are probability density functions). One concludes again by Fatou’s Lemma. ♦

The set ArgminV , or to be precise, the random vectors taking values in ArgminV will the
target(s) of our new algorithm. If V is strictly convex, e.g. if

P[X∈ {p.(x) strictly log-concave and F (x) 6= 0}] > 0,

then ArgminV = {θ∗}. Nevertheless this will not be necessary owing to the combination of the
two results that follow.
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Lemma 1 Let U : Rd → R+ be a convex differentiable function, then

∀ θ, θ′∈ R
d, 〈∇U(θ) −∇U(θ′), θ − θ′〉 ≥ 0.

Furthermore, if ArgminU is nonempty, it is a convex closed set (which coincide with {∇U = 0})
and

∀ θ∈ R
d \ ArgminU, ∀ θ∗∈ ArgminU, 〈∇U(θ), θ − θ∗〉 > 0.

A sufficient (but in no case necessary) condition for a nonnegative convex function U to attain
a minimum is that lim|x|→∞U(x) = +∞.

Now we pass to the statement of the convergence theorem on which we will rely throughout the
paper. It is a slight variant of the regular Robbins-Monro procedure whose proof is rejected in an
annex.

Theorem 1 (Extended Robbins-Monro Theorem) Let H : Rq × Rd → Rd a Borel function and X
an Rd-valued random vector such that E[|H(θ,X)|] < +∞ for every θ∈ Rd. Then set

∀ θ∈ R
d, h(θ) = E[H(θ,X)] .

Suppose that the function h is continuous and that T ∗ := {h = 0} satisfies

∀ θ∈ R
d \ T ∗, ∀ θ∗∈ T ∗, 〈θ − θ∗, h(θ)〉 > 0. (2.5)

Let γ = (γn)n≥1 be a sequence of gain parameters satisfying
∑

n≥1

γn = +∞ and
∑

n≥1

γ2
n < +∞. (2.6)

Suppose that
∀ θ∈ R

d, E
[
|H(θ,X)|2

]
≤ C(1 + |θ|2) (NEC)

(which implies |h(θ)|2 ≤ C(1 + |θ|2)).
Let (Xn)n≥1 be an i.i.d. sequence of random vectors having the distribution of X, a random

vector θ0, independent of (Xn)n≥1 satisfying E
[
|θ0|2

]
< +∞, all defined on the same probability

space (Ω,A,P). Then, the recursive procedure defined by

θn = θn−1 − γn+1H(θn,Xn+1), n ≥ 1 (2.7)

satisfies:
∃ θ∞ : (Ω,A) → T ∗, θ∞ ∈ L2(P), such that θn

a.s.−→ θ∞ . (2.8)

The convergence also holds in Lp(P), p∈ (0, 2).

The proof is postponed to the Appendix at the end of the paper. The natural way to apply
this theorem for our purpose is the following:

– Step 1: we will show that the convex function V in (1.2) is differentiable with a gradient
∇V having a representation as an expectation formally given ∇V (θ) = E[∇θv(θ,X)].

– Step 2: then set H(θ, x) := ρ(θ)∇θv(θ, x) where ρ is a (strictly) positive function on Rq. As
a matter of fact, with the notations of the above theorem

〈θ − θ∗, h(θ)〉 = δ(θ)〈θ − θ∗,∇V (θ)〉,
so that T ∗ = ArgminV and (2.5) is satisfied (set U := V in Lemma 1).

– Step 3: Specify in an appropriate way the function δ so that the linear quadratic growth
assumption is satisfied. This is the sensitive point that will lead us to modify the structure
more deeply by finding a new representation of ∇V as an expectation not directly based on
the local gradient ∇θv(θ, x).
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2.2 A first illustration: the Gaussian case revisited

The Gaussian is the framework of [2]. It is also a kind of introduction to the infinite dimensional
diffusion setting investigated in Section 3. In the Gaussian case, the natural importance sampling
density is the translation of the gaussian density: pθ(x) = p(x− θ) for θ ∈ Rd (i.e. q = d). We have

pθ(x) = e−
|θ|2

2
+〈θ,X〉p(x).

The assumption (H1) is clearly satisfied by the Gaussian density, and we assume that F satisfies
E
[
F 2(X)e−〈θ,X〉] < +∞ so that V is well defined.
In [2], Arouna considers the function H̄V (θ, x) defined by

H̄V (θ, x) = F 2(x)e
|θ|2

2
−〈θ,x〉(θ − x).

It is clear that the condition (NEC) is not satisfied even if we simplify this function by e|θ|
2/2 (which

does not modify the problem).

A first approach: When F (X) have finite moments of any order, a naive way to control directly∥∥H̄V (θn,Xn+1)
∥∥
2

by an explicit deterministic function of θ (in order to rescale it) is to proceed
as follows: one derives from Hölder Inequality that for every couple (r, s), r, s > 1 of conjugate
exponents

∥∥H̄V (θ,X)
∥∥
2
≤
∥∥(θ −X)F 2(X)

∥∥
2r

∥∥∥e−〈θ,X〉
∥∥∥
2s

e
|θ|2

2 .

Setting r = 1 + 1
ε and s = 1 + ε, yields

∥∥H̄V (θ,X)
∥∥
2
≤
(∥∥XF 2(X)

∥∥
2(1+ 1

ε )
+
∥∥F 2(X)

∥∥
2(1+ 1

ε )
|θ|
)
e(

3
2
+ε)|θ|2.

Then, H̄ε(θ, x) := e−( 3
2
+ε)|θ|2H̄V (θ, x) satisfies the condition (NEC) and theoretically the stan-

dard Robbins-Monro algorithm implemented with H̄ε a.s. converges and no projection nor trunca-

tion is needed. Numerically, the solution is not satisfactory because the correcting factor e−( 3
2
+ε)|θ|2

goes to zero much too fast as θ goes to infinity: if at any iteration at the beginning of the procedure
θn is sent “too far”, then it is frozen instantly. If ε is too small it will simply not prevent explosion.
The tuning of ε becomes quite demanding and payoff dependent. This is in complete contradiction
with our aim of a self-controlled variance reducer. A more robust approach needs to be developed.
On the other hand this kind of behaviour suggests that we are not in the right asymptotics to
control

∥∥H̄V (θn,Xn+1)
∥∥
2
.

Note however that when F is bounded with a compact support, then one can set ε = 0 and the
above approach provides an efficient answer to our problem.

A general approach: We consider the density

qθ(x) =
p2(x)

p(x− θ)
= p(x+ θ).

By (1.4), we have

∇V (θ) = E

[
F 2(X̃(θ))

∇p(X̃(θ) − θ)

p(X̃(θ) − θ)

]
,

with X̃(θ) ∼ p(x+ θ)dx, i.e. X̃(θ) = X − θ. Since p is the Gaussian density, we have ∇p(x)
p(x) = −x.

As a consequence, the function HV defined by

HV (θ, x) = F 2(x− θ)(2θ − x),

7



provides a representation ∇V (θ) = E[HV (θ,X)] of the gradient ∇V . As soon as F is bounded,
this function satisfies the condition (NEC). Otherwise, we note that thanks to this new change of
variable the parameter θ lies now inside the payoff function F and that the exponential term has
disappeared from the expectation. If we have an a priori control on the function F (x) as |x| goes
to infinity, say

∃λ ∈ R+, ∀x ∈ R
d, |F (x)| ≤ cF e

λ|x|,

then we can consider the function Hλ(θ, x) = e−λ|θ|HV (θ, x) which satisfies

‖Hλ(θ,X)‖
2
≤ c2F

∥∥∥e2λ|X|(2θ −X)
∥∥∥
2

,

≤ C(1 + |θ|).

The resulting Robbins-Monro algorithm reads

θn+1 = θn − γn+1e
−λ|θn|F 2(Xn+1 − θn)(2θn −Xn+1).

We no longer to tune the correcting factor and one verifies on simulations that it does not suffer
from freezing in general. In case of a too dissymmetric function F this may still happen but a
self-controlled variant is proposed in Section 2.3 below to completely get rid of this effect (which
cannot be compared to an explosion).

2.3 Translation of the mean: the general strongly unimodal case

We consider importance sampling by mean translation, namely we set

∀x ∈ R
d, pθ(x) = p(x− θ),

for θ ∈ Rd.
In this section we assume that

p is log-concave and lim
|x|→∞

p(x) = 0,

so that (H1) holds. Moreover, we make the following additional assumption on the probability
density p

∃ a∈ [1, 2] such that

{
(i) |∇p|

p (x) = O(|x|a−1) as |x| → ∞
(ii) ∃δ > 0, log p(x) + δ|x|a is convex.

(Htr
a )

First we will use (1.2) to differentiate V since

Proposition 2 Suppose (H1) and (Htr
a ) are satisfied and the function F satisfies

∀ θ ∈ R
d, E

[
F 2(X)

p(X)

p(X − θ)

]
< +∞ and ∀C > 0, E

[
F 2(X)eC|X|a−1

]
< +∞. (2.9)

Then V is finite and differentiable on Rd with a gradient given by

∇V (θ) = E

[
F 2(X)

p(X)

p2(X − θ)
∇p(X − θ)

]
(2.10)

= E

[
F 2(X − θ)

p2(X − θ)

p(X)p(X − 2θ)

∇p(X − 2θ)

p(X − 2θ)

]
. (2.11)
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Proof. The formal differentiation to get (2.10) from (1.2) is obvious. So it remains to check the
domination property for θ lying inside a compact set. Let x∈ Rd and θ∈ Rd. The log-concavity of
p implies that

log p(x) ≤ log p(x− θ) +
〈∇p(x− θ), θ〉
p(x− θ)

so that

0 ≤ p(x)

p(x− θ)
≤ exp

|∇p(x− θ)|
p(x− θ)

|θ|.

Using the assumption (Htr
a ) yields, for every θ∈ B(0, R),

F 2(X)
p(X)

p2(X − θ)
∇p(X − θ) ≤ F 2(X)(A|X|a−1 +B)e(A|X−θ|a−1+B)|θ|

≤ CRF
2(X)eC

′|X|a−1
=: g(X)∈ L1(P)

To derive the second expression (2.11) for the gradient, we proceed as follows: an elementary change
of variable shows that

∇V (θ) =

∫

Rd

F 2(x)
p(x)

p2(x− θ)
p(x)∇p(x− θ)dx

=

∫

Rd

F 2(x− θ)
p2(x− θ)

p2(x− 2θ)
∇p(x− 2θ)dx

= E

[
F 2(X − θ)

p2(X − θ)

p(X)p(X − 2θ)

∇p(X − 2θ)

p(X − 2θ)

]
. ♦

Remark. The second change of variable (in (1.2)) has been processed to withdraw the parameter
θ from the possible non smooth function F to make possible the differentiation of V (since p is
smooth). The second expression (2.11) results form a third translation of the variable in order
to plug back the parameter θ into the function F which in common applications has a known
controlled growth rate at infinity.

This last statement may look strange at a first glance since θ appears in the “weight” term of

the expectation that involves the probability density p. However, when X
d
= N (0; 1), this term can

be controlled easily since it reduces to

p2(x− θ)

p(x)p(x− 2θ)

∇p(x− 2θ)

p(x− 2θ)
= eθ

2
(2θ − x).

The following lemma shows that, more generally in our strongly unimodal setting, if (H1) and
(Htr

a ) are satisfied, this “weight” can always be controlled by a deterministic function of θ.

Lemma 2 If (Htr
a ) holds, then there exists two real constants A, B such that

p2(x− θ)

p(x)p(x− 2θ)

|∇p(x− 2θ)|
p(x− 2θ)

≤ e2δ|θ|
a (
A|x|a−1 +A|θ|a−1 +B

)
. (2.12)

Proof. Let f be the convex function defined on Rd by f(x) = log p(x) + δ|x|a. Then, for every
x, θ∈ Rd,

log

(
p2(x− θ)

p(x)p(x− 2θ)

)
= log

(
f2(x− θ)

f(x)f(x− 2θ)

)
+ δ (|x|a + |x− 2θ|a − 2|x− θ|a)

9



Note that x−θ = 1
2 (x+(x−2θ)). Then, using the log-convexity of f and the elementary inequality

∀u, v∈ R
d, |u|a + |v|a ≤ 2

(∣∣∣∣
u+ v

2

∣∣∣∣
a

+

∣∣∣∣
u− v

2

∣∣∣∣
a)

(valid if a∈ (0, 2]) yields
p2(x− θ)

p(x)p(x− 2θ)
≤ e2δ|θ|

a
. (2.13)

One concludes by the point (i) of (Htr
a ). ♦

Remark. Thus the normal distribution satisfies (Htr
a ) with a = 2 and δ = 1/2. Moreover, note

that the last inequality in the above proof holds as an equality.

Now we are in position to derive an unconstraint (extended) Robbins-Monro algorithm to
minimize the function V , provided the function F satisfies a sub-multiplicative control property, in
which c > 0 is a real parameter and F̃ a function from Rd to R+, such that, namely





∀x, y∈ Rd, |F (x)| ≤ F̃ (x) and F̃ (x+ y) ≤ C(1 + F̃ (x))c(1 + F̃ (y))c

E

[
|X|2(a−1)F̃ (X)4c

]
< +∞.

(Htr
c )

Remark. Assumption (Htr
c ) seems almost non-parametric. However, its field of application is

somewhat limited by (Htr
a ) for the following reason: if there exists a positive real number η > 0

such that x 7→ log p(x) + η|x|a is concave, then p(x) ≤ Ce−η|x|
a
(|x| + 1) for some real constant

C > 0; which in turn implies that the function F̃ in (Htr
c ) needs to satisfy F̃ (x) ≤ C ′eλ|x|

b
for some

b ∈ (0, a) and some λ > 0. (Then c = cb with cb = 1 if b ∈ [0, 1] and cb = 2
b
2 if b∈ (1, a), when

a > 1).

Theorem 2 Suppose X and F satisfy (H1), (Htr
a ), (2.9) and (Htr

c ) for some parameters a ∈
(0, 2], b∈ (0, a) and λ > 0, and that the step sequence (γn)n≥1 satisfies the usual decreasing step
assumption ∑

n≥1

γn = +∞ and
∑

n≥1

γ2
n+1 < +∞.

Then the recursive procedure defined by

θn+1 = θn − γn+1H(θn,Xn+1), θ0∈ R
d (2.14)

where (Xn)n≥1 is an i.i.d. sequence with the same distribution as X and

H(θ, x) :=
F 2(x− θ)

1 + F̃ (−θ)2c
e−2δ|θ|a p2(x− θ)

p(x)p(x− 2θ)

∇p(x− 2θ)

p(x− 2θ)
, (2.15)

a.s. converges toward an ArgminV -valued (square integrable) random variable θ∗.

Proof. In order to apply Theorem 1, we have to check the following fact:
– Mean reversion: The mean function of the procedure defined by (2.14) reads

h(θ) = E[H(θ,X)] =
e−2δ|θ|a

1 + F̃ (−θ)2c
∇V (θ)
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so that T ∗ := {h = 0} = {∇V = 0} and if θ∗∈ T ∗ and θ∈ Rd \ T ∗,

〈θ − θ∗, h(θ)〉 =
e−2δ|θ|a

1 + F̃ (−θ)2c
〈∇V (θ), θ − θ∗〉 > 0

for every θ 6= θ∗.
– Linear growth of θ 7→ ‖H(θ,X)‖2 : All our efforts in the design of the procedure are motivated

by this Assumption (NEC) which prevents explosion. This condition is clearly fulfilled by H since

E[|H(θ,X)|]2 =
e−4δ|θ|a

(1 + F̃ (−θ)2c)2
E

[
F 4(X − θ)

(
p2(X − θ)

p(X)p(X − 2θ)

|∇p(X − 2θ)|
p(X − 2θ)

)2
]
,

≤ Ce−4δ|θ|a
E

[
(1 + F̃ (X)2c)2(A(|X|a−1 + |θ|a−1) +B)2

]
,

where we used Assumption (Htr
c ) in the first line and Inequality (2.12) from Lemma 2 in the second

line. One derives that there exists a real constant C > 0 such that

E[|H(θ,X)|]2 ≤ CE

[
F̃ (X)4c(1 + |X|)2(a−1)

]
(1 + |θ|2(a−1)).

This provides the expected condition since (Htr
c ) holds. ♦

Examples of distributions

• The normal distribution. Its density is given on Rd by

p(x) = (2π)−
d
2 e−|x|2/2, x∈ R

d.

so that (H1) is satisfied as well as (Htr
a ) for a = 2, δ = 1

2 . Assumption (Htr
c ) is satisfied iff

(b, λ)∈ (0, 2) × (0,∞) ∪ {2} × (0, 1
2 ). Then the function H has a particularly simple form

H(θ, x) = e−
λ
2
|θ|bF 2(x− θ)(2θ − x)

• The hyper-exponential distributions

p(x) = Cd,a,σe
− |x|a

σa P (x), a∈ [1, 2]

where P is polynomial function. This wide family includes the normal distributions, the
Laplace distribution, the symmetric gamma distributions, etc.

• The logistic distribution Its density on the real line is given by

p(x) =
ex

(ex + 1)2

(H1) is satisfied as well as (Htr
a ) for a = 1+η (η∈ (0, 1)), δ > 0. Assumption (Htr

c ) is satisfied
iff (b, λ)∈ (0, 1) × (0,∞) ∪ {1} × (0, 1).

11



2.4 Exponential change of measure: the Esscher transform

A second classical approach is to consider an exponential change of measure (or Esscher transform).
This transformation has already been consider for that purpose in [12] to extend the procedure with
repeated projections introduced in [2]. We denote by ψ the cumulant generating function (or log–
Laplace) of X i.e. ψ(θ) = log E

[
e〈θ,X〉]. We assume that ψ(θ) < +∞ for every θ ∈ Rd (which

implies that ψ is an infinitely differentiable convex function) and define

pθ(x) = e〈θ,x〉−ψ(θ)p(x), x ∈ R
d.

Let X(θ) denote any random variable with distribution pθ.
We assume that ψ satisfies

lim
|θ|→+∞

ψ(θ) − 2ψ
(θ

2

)
= +∞ and ∃ δ > 0, θ 7→ ψ(θ) − δ|θ|2 is concave. (Hes

δ )

One must be aware that what follows makes sense as a variance reduction procedure only if the
distribution of X(θ) can be simulated at the same cost as X or at least at a reasonable cost i.e.

X(θ) = g(θ, ξ), ξ : (Ω,A,P) → X (2.16)

where X is a Borel subset of a metric space and g : Rd ×X is an explicit Borel function. By (1.2),
the potential V to be minimized is V (θ) = E

[
F 2(X)e−〈θ,X〉+ψ(θ)

]
.

Proposition 3 Suppose ψ satisfies (Hes
δ ) and F satisfies

∀θ ∈ R
d, E

[
|X|F 2(X)e〈θ,X〉

]
< +∞. (2.17)

Then (H1) is fulfilled and the function V is differentiable on Rd with a gradient given by

∇V (θ) = E

[
(∇ψ(θ) −X)F 2(X)e−〈θ,X〉+ψ(θ)

]
, (2.18)

= E

[(
∇ψ(θ) −X(−θ))F 2(X(−θ))

]
eψ(θ)−ψ(−θ), (2.19)

where ∇ψ(θ) =
E
[
Xe〈θ,X〉]

E
[
e〈θ,X〉] .

Proof. The function ψ is clearly log-convex so that θ 7→ pθ(x) is log-concave for every x∈ Rd. On

the other hand, by (Hes
δ ) we have lim

p2
θ/2

(x)

pθ(x) = +∞ for every x∈ Rd, and (H1) is fulfilled.

The formal differentiation to get (2.18) is obvious and is made rigorous by applying the as-
sumption on F . The second expression (2.19) of the gradient uses a third change of variable

∇V (θ) =

∫

Rd

(∇ψ(θ) − x)F 2(x)e−〈θ,x〉+ψ(θ)p(x)dx,

=

∫

Rd

(∇ψ(θ) − x)F 2(x)eψ(θ)−ψ(−θ)p−θ(x)dx,

= E

[(
∇ψ(θ) −X(−θ))F 2(X(−θ))

]
eψ(θ)−ψ(−θ). ♦

Theorem 3 We assume that ψ satisfies (Hes
δ ) and F satisfies (2.17) and

∀x ∈ R
d, |F (x)| ≤ Ce

λ
4
|x| and E

[
|X|2eλ|X|

]
< +∞.
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Then the recursive procedure

{
X

(θn)
n+1 = g(θn, ξn+1)

θn+1 = θn − γn+1H(θn,X
(−θn)
n+1 ), n ≥ 0, θ0∈ Rd

where (ξn)n≥1 is an i.i.d. sequence with the same distribution as ξ in (2.16) and

H(θ, x) := e−
λ
2

√
d|∇ψ(−θ)|F 2(x)

(
∇ψ(θ) − x

)

a.s. converges toward an ArgminV -valued (square integrable) random vector θ∗ .

Proof. We have to check the linear growth of the function θ 7→
∥∥H(θ,X(−θ))

∥∥
2
(condition (NEC)).

We have

E

[
|H(θ,X(−θ))|2

]
= e−λ

√
d|∇ψ(−θ)|

E

[
F 4(X(−θ))

∣∣∇ψ(θ) −X(−θ)∣∣2
]
,

≤ Ce−λ
√
d|∇ψ(−θ)|

E

[
eλ|X

(−θ)|∣∣∇ψ(θ) −X(−θ)∣∣2
]
,

≤ Ce−λ
√
d|∇ψ(−θ)|

(
|∇ψ(θ)|2E

[
eλ|X

(−θ)|
]

+ E

[
|X(−θ)|2eλ|X(−θ)|

])
. (2.20)

First, by the following inequality

∀x ∈ R
d, eλ|x| ≤

d∏

j=1

(
eλxj + e−λxj

)
=

∑

J⊂{1,...,d}
eλ(

P

j∈J 〈ej ,x〉+
P

j∈Jc〈ej ,x〉)

we have eλ|x| ≤
∑

J⊂{1,...,n}
eλ〈eJ ,x〉 where (eJ )j = 1 if j ∈ J or −1 if j ∈ Jc. With this notation, we

have

E

[
eλ|X

(−θ)|
]
≤

∑

J⊂{1,...,d}
E

[
eλ〈eJ ,X

(−θ)〉
]

=
∑

J⊂{1,...,d}
eψ(λeJ−θ)−ψ(−θ).

By the concavity of ψ − δ | . |2, we have

∀u, v∈ R
d, ψ(u+ v) − ψ(u) ≤ 〈∇ψ(u), v〉 + δ |v|2

so that
E

[
eλ|X

(−θ)|
]
≤

∑

J⊂{1,...,d}
eλ〈∇ψ(−θ),eJ 〉+δλ2|eJ |2 ≤ Cd,λ,δe

λ
√
d|∇ψ(−θ)|. (2.21)

In the same way, we have

E

[
|X(−θ)|2eλ|X(−θ)|

]
≤

∑

J⊂{1,...,d}
E

[
|X(λeJ−θ)|2

]
eψ(λeJ−θ)−ψ(−θ),

≤ Cd,λ,δe
λ
√
d|∇ψ(−θ)| ∑

J⊂{1,...,d}
E

[
|X(λeJ−θ)|2

]
. (2.22)

Now, by differentiation of ψ it is easy to check that

∀θ ∈ R
d, D2ψ(θ) =

∫
x⊗2e〈θ,x〉p(x) dx

eψ(θ)
−∇ψ(θ)⊗2,
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which implies

E

[
|X(λeJ−θ)|2

]
= Tr

(
D2ψ(λeJ − θ)

)
+ Tr

(
∇ψ(λeJ − θ)⊗2

)
.

The assumption (Hes
δ ) implies that 0 ≤ D2ψ(θ) ≤ 2δ Id (for the partial order on symmetric matrices

induced by nonnegative symmetric matrices) then D2ψ(θ) is a bounded function of θ∈ Rd and in
turn ∇(θ) has a linear growth by the fundamental formula of calculus. Consequently, for every
J ⊂ (1, . . . , d),

E

[
|X(λeJ−θ)|2

]
≤ C

(
1 + |θ|2

)
.

Plugging this into (2.22) and using (2.21) and (2.20) we obtain E
[
|H(θ,X(−θ))|2

]
≤ C

(
1 + |θ|2

)
.

♦

3 Adaptive variance reduction for diffusions

3.1 Framework and preliminaries

We consider a d-dimensional Itô process X = (Xt)t∈[0,T ] solution to the stochastic differential
equation (SDE)

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, X0 = x∈ R
d, (Eb,σ,W )

where W = (Wt)t∈[0,T ] is a q-dimensional standard Brownian motion, Xt := (Xt∧s)s∈[0,T ] is the

stopped process at time t, b : [0, T ]×C([0, T ],Rd) → Rd and σ : [0, T ]×C([0, T ],Rd) → M(d, q) are
measurable with respect to the canonical predictable σ-field on [0, T ] × C([0, T ],Rd). For further
details we refer to [18], p. 124-130.

Thus, if b(t, xt) = β(t, x(t)) and σ(t, xt) = ϑ(t, x(t)) for every x ∈ C([0, T ],Rd), X is a usual
diffusion process with drift β and diffusion coefficient ϑ.

If b(t, xt) = β(t, x(t)) and σ(t, xt) = ϑ(t, x(t)) for every x∈ C([0, T ],Rd) where t := ⌊ tnT ⌋Tn , then
X is the continuous Euler scheme with step T/n of the above diffusion with drift β and diffusion
coefficient ϑ.

An easy adaptation of standard proofs for regular SDE’s show (see [18]) that strong existence
and uniqueness of solutions for (Eb,σ,W ) follows from the following assumption

{
(i) b(., 0) and σ(., 0) are continuous

(ii) ∀ t∈ [0, T ], ∀x, y∈ C([0, T ],Rd), |b(t, y) − b(t, x)| + ‖σ(t, y) − σ(t, x)‖ ≤ Cb,σ ‖x− y‖
∞
.

(Hb,σ)

Our aim is to devise an adaptive variance reduction method inspired from Section 2 for the
computation of

E[F (X)]

where F is an Borel functional defined on C([0, T ],Rd) such that

P
[
F 2(X) > 0

]
> 0 and F (X)∈ L2(P). (3.23)

In this functional setting, Girsanov Theorem will play the role of the invariance of Lebesgue measure
by translation. The translation process that we consider in this section is of the form Θ(t,Xt) where
Θ is defined for every ξ∈ C([0, T ],Rd) and θ∈ L2

T,p by

Θ(t, ξ) := ϕ(t, ξt) θt, with ϕ : [0, T ] × C([0, T ],Rd) → M(q, p),
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a bounded Borel function and θ∈ L2
T,p (represented by a Borel function) for p ≥ 1. In the sequel,

we use the following notations ϕt(ξ) := ϕ(t, ξt),

Θt := Θ(t,Xt), Θ
(θ)
t := Θ(t,X(θ),t), and Θ

(−θ)
t := Θ(t,X(−θ),t),

where X(±θ) denotes the solution to (Eb±σΘ,σ,W ).
First we need the following standard abstract lemma.

Lemma 3 Suppose (Hb,σ) holds.
The SDE (Eb+σΘ,σ,W ) satisfies the weak existence and uniqueness assumptions and for every non
negative Borel functional G : C([0, T ],Rd+1) → R+ and f ∈ C([0, T ],Rq) we have, with the above
notations,

E

[
G
(
X,

∫ .

0
〈f(s,Xs),dWs〉

)]
= E

[
G
(
X(θ),

∫ .

0
〈f(s,X(θ),s),dWs〉 +

∫ .

0
〈f,Θ〉(s,X(θ),s) ds

)

× e
−

R T
0
〈Θ(θ)

s ,dWs〉− 1
2‖Θ(θ)‖2

L2
T,q

]
,

and

E

[
G
(
X(θ),

∫ .

0
〈f(s,X(θ),s),dWs〉

)]
= E

[
G
(
X,

∫ .

0
〈f(s,Xs),dWs〉 −

∫ .

0
〈f,Θ〉(s,Xs) ds

)

× e

R T
0
〈Θs,dWs〉− 1

2
‖Θ‖2

L2
T,q

]
,

Proof. This is a straightforward application of Theorem 1.11, p.372 (and the remark that imme-
diately follows) in [16] once noticed that (t, ω) 7→ b(t,Xt(ω)), (t, ω) 7→ σ(t,Xt(ω)) and (t, ω) 7→
Θ(t,Xt(ω)) are predictable processes with respect to the completed filtration of W . ♦

Remarks. • The Doléans exponential

(
e

R t
0〈Θs,dWs〉− 1

2
‖Θ‖2

L2
T,q

)

t∈[0,T ]

is a true martingale for any

θ∈ L2
T,p.

• In fact, still following the above cited remark form [16], the above lemma holds true if we replace

Θ by any progressively measurable process Θ̃ such that E

[
e

1
2

R T
0 |Θ̃(s,ω)|2 ds

]
< +∞.

It follows from the first identity in Lemma 3 that for every bounded Borel function ϕ : [0, T ] ×
C([0, T ],Rd) → M(q, p) and for every θ∈ L2

T,p

E[F (X)] = E

[
F (X(θ))e

−
R T
0 〈Θ(θ)

s ,dWs〉− 1
2‖Θ(θ)‖2

L2
T,q

]
,

(set G(x, y) = F (x)). So, finding the estimator with the lowest variance amounts to solving the
minimization problem

min
θ∈L2

T,p

V (θ) where V (θ) := E

[
F 2(X(θ))e

−2
R T
0
〈Θ(θ)

s ,dWs〉−‖Θ(θ)‖2

L2
T,q

]
,

Using Lemma 3 with G(x, y) = F 2(x)e
−2y(T )−‖ϕ(.,x.)θ‖2

L2
T,q and f = Θ yields

V (θ) = E

[
F 2(X)e

−
R T
0
〈Θs,dWs〉+ 1

2
‖Θ‖2

L2
T,q

]
. (3.24)

15



Proposition 4 Assume EF (X)2+η < +∞ for some η > 0 as well as Assumptions (3.23) and
(Hb,σ). Then function V is finite on L2

T,p and log-convex.

(a) Assume that the bounded matrix-valued Borel function ϕ satisfies that ϕ(s,Xs) has a non-
atomic kernel on the event {F (X) > 0} i.e.

P
[
{∃ θ∈ L2

T,p \ {0} s.t. θ(s)∈ Kerϕ(s,Xs) ds-a.e. and F 2(X) > 0}
]

= 0 (3.25)

then for every finite dimensional subspace E ⊂ L2
T
, lim
‖θ‖

L2
T,p

→+∞,θ∈E
V (θ) = +∞. If further-

more

inf
‖θ‖

L2
T,p

=1

∫ T

0
θ(s)∗E

[
ϕ(s,Xs)∗ϕ(s,Xs)1{F 2(X)>0}

]
θ(s) ds > 0, (3.26)

then lim
‖θ‖

L2
T,p

→+∞
V (θ) = +∞.

(b) The function V is differentiable at every θ∈ L2
T,p and the differential DV (θ)∈ L2

T,p is char-

acterized on every ψ∈ L2
T,p by

〈DV (θ), ψ〉
L2

T,p
= E

[
F 2(X)e

−
R T
0
〈Θs,dWs〉+ 1

2
‖Θ‖2

L2
T,q

(
〈Θ, ϕ(.,X .)ψ〉

L2
T,p

−
∫ T

0
〈ϕ(s,Xs)ψs,dWs〉

)]
,

= E

[
F 2(X(−θ))e

‖Θ(−θ)‖2

L2
T,p

(
2〈Θ(−θ), ϕ(X(−θ),.)ψ〉

L2
T,p

−
∫ T

0
〈ϕ(X(−θ),s)ψs,dWs〉

)]
. (3.27)

Remarks. • For practical implementation, the “finite dimensional” statement is the only result of
interest since it ensures that Argmin|E 6= ∅.
• If p = q and ϕ = Iq, the “infinite-dimensional” assumption is always satisfied.

Proof. (a) As concerns the function V , we rely on Equality (3.24). Set r = 1 + 2/η. Owing to the
Hölder Inequality, showing that this function is finite on the whole space L2

T,q amounts to proving
that

E

[
e

r
2
‖Θ‖2

L2
T,q

−r
R T
0 〈Θs,dWs〉

]
≤ e

‖ϕ‖2
∞‖θ‖

L2
T,p

r(r+1)/2
< +∞.

To show that V goes to infinity at infinity, one proceeds as follows. Using the trivial equality

e
−

R T
0
〈Θs,dWs〉+ 1

2
‖Θ‖2

L2
T,q =

(
e
− 1

2

R T
0
〈Θs,dWs〉+ 1

8
‖Θ‖2

L2
T,q

)2

e
1
4
‖Θ‖2

L2
T,q

and the reverse Hölder inequality with conjugate exponents (1
3 ,−1

2) we obtain

V (θ) ≥ E

[
F 2/3(X)e

1
12

‖Θ‖
L2

T,q

]3

E

[
e

1
2

R T
0 〈Θs,dWs〉− 1

8
‖Θ‖2

L2
T,q

]−2

,

≥ E

[
F 2/3(X)e

1
12

‖Θ‖2

L2
T,q

]3

by the martingale property of the Doléans exponential. Let ε > 0 such that P
[
F 2(X) ≥ ε

]
> 0.

We have then V (θ) ≥ ε1/3E
[
1{F 2(X)≥ε}e

1
12

‖Θ‖
L2

T,q

]3
, and by the conditional Jensen inequality

V (θ) ≥ ε1/3E

[
1{F 2(X)≥ε}e

1
12

E

[
‖Θ‖2

L2
T,q

∣∣F 2(X)≥ε
]]3

= E

[
1{F 2(X)≥ε}e

1
12

P[F 2(X)≥ε]E
[
‖Θ‖2

L2
T,q

1{F2(X)≥ε}

]]3

.
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Now

E

[
‖Θ‖2

L2
T,q

1{F 2(X)≥ε}
]

=

∫ T

0
θ(s)∗E

[
ϕs(X

s)∗ϕs(X
s)1{F 2(X)≥ε}

]
θ(s) ds ≥ 0.

The assumption (3.25) implies that, for every θ∈ L2
T,p,

∫ T

0
θ(s)∗ E

[
ϕs(X

s)∗ ϕs(X
s)1{F 2(X)≥ε}

]
θ(s) ds ≥

∫ T

0
θ(s)∗ E

[
ϕs(X

s)∗ ϕs(X
s)1{F 2(X)≥0}

]
θ(s) ds > 0,

so that if θ runs over the compact sphere of a finite dimensional subspace E of L2
T,p

inf
‖θ‖

L2
T,p

=1,θ∈E

∫ T

0
θ(s)∗ E

[
ϕs(X

s)∗ ϕs(X
s)1{F 2(X)≥ε}

]
θ(s) ds > 0,

so that
lim

‖θ‖
L2

T,p
→∞,θ∈E

E

[
‖Θ‖2

L2
T,q

1{F 2(X)≥ε}
]

= +∞,

and one concludes by Fatou’s Lemma using that P
[
F 2(X) ≥ ε

]
> 0. The second claim easily

follows from Assumption (3.26).

(b) As a first step, we show that the random functional Φ(θ) := 1
2 ‖Θ‖

L2
T,q

−
∫ T
0 〈Θ(s),dWs〉 from

L2
T,p into Lr(P) (r∈ [1,∞)), is differentiable. Indeed, it from the below inequality,

∀ θ, ψ∈ L2
T,p, |Φ(θ + ψ) − Φ(θ) − 〈DΦ(θ), ψ〉

L2
T,p

| ≤ ‖ϕ‖2
∞
‖θ‖

L2
T,p

‖ψ‖
L2

T,p
(3.28)

where ψ 7→ 〈DΦ(θ), ψ〉
L2

T,p
=
∫ T
0 〈ϕs(Xs)θ(s), ϕs(X

s)ψ(s)〉ds −
∫ T
0 〈ϕs(Xs)ψ(s),dWs〉 is clearly a

bounded random functional from L2
T,p into Lr(P), with an operator norm |‖DΦ(θ)‖|L2

T,p,L
r(P) ≤

‖ϕ‖2
∞
‖θ‖

L2
T,p

+ cp ‖ϕ‖∞
(cp∈ (0,+∞) (this follows from Hölder and B.D.G. inequalities).

Then, we derive that θ 7→ eΦ(θ) is differentiable form L2
T,p into every Lr(P) with differential

eΦ(θ) DΦ(θ). This follows from standard computation based on (3.28), the elementary inequality
|eu − 1 − u| ≤ 1

2u
2(eu + e−u) and the fact that

∥∥∥∥
∣∣∣
∫ T

0
〈ϕs(Xs)ψ(s),dWs〉

∣∣∣e
R T
0
〈φ(Xs)θ(s),dWs〉

∥∥∥∥
r

≤
∥∥∥∥
∫ T

0
〈ϕs(Xs)ψ(s),dWs〉

∥∥∥∥
2r

∥∥∥∥e
R T
0
〈ϕs(Xs)θ(s),dWs〉

∥∥∥∥
2p

,

≤ cp ‖ϕ‖∞
‖θ‖

L2
T,p

‖ψ‖
L2

T,p
,

where we used both Hölder and B.D.G. inequality.
One concludes that θ 7→ V (θ) = E

[
F (X)2eΦ(θ)

]
is differentiable by using the (L2

T,p
, Lr(P))–

differentiability of eΦ(θ) with r = 1 + η
2 .

The second form of the gradient is obtained by a Girsanov transform using Lemma 3. ♦

3.2 Design of the algorithm

In view of a practical implementation of the procedure we are lead to consider some non trivial
finite dimensional subspaces E of L2

T,p. The function V being strictly log-convex on E and going
to infinity as ‖θ‖

L2
T,p

goes to infinity, θ∈ E, the restriction of V on E attains a minimum θ∗E which

de facto becomes the target of the procedure. Furthermore, for every θ ∈ E, DV|E(θ) = DV (θ)|E
and the quadratic function L(θ) :=

∥∥θ − θ∗
E

∥∥
L2

T,p
is a Lyapunov function for the problem.
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Like for the static framework investigated in Section 2.3, our algorithm will be based on the
representation (3.27) for the differential DV of V : in this representation the variance reducer θ
appears inside the functional F which makes easier a control at infinity in order to prevent from
any early explosion of the procedure. However, to this end we need to control the discrepancy
between X and X(−θ). This is the purpose of the following Lemma.

Lemma 4 Assume (Hb,σ) holds. Let ϕ be a bounded Borel M(q, p)-valued function defined on
[0, T ] × C([0, T ],Rd), let θ ∈ L2

T,p and let X and X(θ) denote a strong solutions of Eb,σ,W and
Eb+σΘ,σ,W driven by the same Brownian motion. Then, for every r ≥ 1, there exists a real constant
Cb,σ > 0 such that

∥∥∥∥ sup
t∈[0,T ]

∣∣Xt −X
(θ)
t

∣∣
∥∥∥∥

r

≤ Cb,σe
Cb,σT

∥∥∥∥
∫ T

0

∣∣σ(s,X(θ),s)Θ(θ)
s

∣∣ds
∥∥∥∥

r

. (3.29)

Proof. The proof follows the lines of the proof of the strong rate of convergence of the Euler
scheme (see e.g. [3]). ♦

The main result of this section is the following theorem.

Theorem 4 Suppose that Assumption (3.23) and (Hb,σ) hold.
Let ϕ be a bounded Borel M(q, p)-valued function (with p ≥ 1) defined on [0, T ]×C([0, T ],Rd),

and let F be a functional F satisfying

∀x∈ C([0, T ],Rd), |F (x)| ≤ CF (1 + ‖x‖λ
∞

) (GF,λ)

for some positive exponent λ > 0 (then F (X)∈ Lr(P) for every r > 0). Let E be a finite dimensional
subspace of L2

T,p spanned by an orthonormal basis (e1, . . . , em).
Let η > 0. We define the algorithm by

θn+1 = θn − γn+1Hλ,η(θn,X
(−θn),W (n+1))

where γ = (γn)n≥1 satisfies (2.6), (W (n))n≥1 is a sequence of independent Brownian motions for
which X(−θn) = G(−θn,W (n+1)) is a strong solution to (Eb−σΘ,W

(n+1)) and for every standard
Brownian motion W , every FW

t -adapted Rp-valued process ξ = (ξt)t∈[0,T ],

〈Hλ,η(θ, ξ,W ), ei〉L2
T,p

= Ψλ,η(θ, ξ)F
2(ξ)e

‖Θ(.,ξ.)‖
L2

T,q

(
2〈Θ(., ξ.), ϕ(., ξ.)ei〉L2

T,q
−
∫ T

0
〈ϕ(s, ξs)ei(s),dWs〉

)

where for η > 0

Ψλ,η(θ, ξ) =





e
−‖ϕ‖∞‖θ‖

L2
T,p

1+‖ϕ(.,ξ.)θ‖2λ+η

L2
T,q

if σ is bounded,

e
−(‖ϕ‖∞+η)‖θ‖

L2
T,p if σ is unbounded.

Then the recursive sequence (θn)n≥1 a.s. converges toward an ArgminV -valued (squared integrable)
random variable θ∗.

Remark. For a practical implementation of this algorithm, we must have for all Brownian motions
W (n+1) a strong solution X(−θn) of (Eb−σΘ,W

(n+1)). In particular, this is the case if the driver ϕ
is locally Lipshitz (in space) or if X is the continuous Euler scheme of a diffusion with step T/n
(using the driver ϕ(t, xt) = f(t, x(t))).

Note that if ϕ is continuous (in space) but not necessarily locally Lipshitz, the Euler scheme
converges in law to the solution of the SDE.
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Proof. When the diffusion coefficient σ is bounded, it follows from Lemma 4 that, for every r ≥ 1,
∥∥∥∥ sup
t∈[0,T ]

∣∣Xt −X
(θ)
t

∣∣
∥∥∥∥

r

≤ Cb,σ,T ‖ϕ‖
∞
‖θ‖

L2
T,p

‖σ‖
∞
,

where ‖σ‖
∞

= sup(t,x)∈[0,T ]×C([0,T ],Rd) ‖σ(t, x)‖.
First note that for every θ, ψ∈ E, the mean function h of the algorithm reads

〈h(θ), ψ〉
L2

T,p
= E

[
〈Hλ,η(θ,X

(−θ),W ), ψ〉
L2

T,p

]
= E


 e

−‖ϕ‖∞‖θ‖
L2

T,p

1 +
∥∥Θ(−θ)

∥∥2λ+η

L2
T,q

〈DV|E(θ), ψ〉
L2

T,p


 ,

so that, for every θ 6= θ∗
E
,

〈h(θ), θ − θ∗E〉 = E


 e

−‖ϕ‖∞‖θ‖
L2

T,p

1 +
∥∥Θ(−θ)

∥∥2λ+η

L2
T,q

〈DV|E(θ), θ − θ∗E〉L2
T,p


 > 0.

It remains to check that for every i ∈ {1, . . . ,m},
∥∥Hλ,η(θ,X

(−θ),W )
∥∥
2
≤ C

(
1 + ‖θ‖

L2
T,p

)
to

apply the Robbins-Zygmund Lemma which ensures the a.s. convergence of the procedure (see

Section 2.1). We first deal with the term F (X(−θ))2
∫ T
0 〈ϕs(X(−θ),s)ei(s),dWs〉. Let η′ = η

2λ > 0.
∥∥∥∥F (X(−θ))2

∫ T

0
〈ϕs(X(−θ),s)ei(s),dWs〉

∥∥∥∥
2

≤
∥∥∥F (X(−θ))2

∥∥∥
2+η′

∥∥∥∥
∫ T

0
〈ϕs(X(−θ),s)ei(s),dWs〉

∥∥∥∥
2(1+1/η′)

,

≤
∥∥∥F (X(−θ))2

∥∥∥
2+η′

∥∥∥∥
∫ T

0
|ϕs(X(−θ),s)ei(s)|2 ds

∥∥∥∥
1+1/η′

,

≤
∥∥∥F (X(−θ))2

∥∥∥
2+η′

‖ϕ‖
∞
.

Now∥∥∥F (X(−θ))2
∥∥∥
2(1+η′)

≤ C
(
1 +

∥∥∥∥X(−θ)∥∥
∞

∥∥2λ(1+η′)

4λ(1+η′)

)
,

≤ Cλ,b,σ,T

(
1 +

∥∥∥∥X
∥∥

∞

∥∥2λ(1+η′)

4λ(1+η′)
+ ‖θ‖2λ(1+η′)

L2
T,p

‖ϕ‖2λ(1+η′)
∞

‖σ‖2λ(1+η′)
∞

)
,

≤ Cλ,b,σ,ϕ,T

(
1 + ‖θ‖2λ+η

L2
T,p

)
.

One shows likewise that ∥∥∥F (X(−θ))2
∥∥∥
2

≤ Cλ,b,σ,ϕ,T

(
1 + ‖θ‖2λ

L2
T,p

)
.

Combining theses estimates shows that Hλ,η(θ,X
(−θ),W ) satisfies the linear growth assumption in

L2(P).

If σ is unbounded it follows from Assumption (Hb,σ) that, for every (t, x)∈ [0, T ] × C([0, T ],Rd),

‖σ(t, x)‖ ≤ Cσ (1 + ‖x‖
∞

) .

Elementary computation based on (3.29) and Lemma 3 yield
∥∥∥∥
∫ T

0
|σ(s,X(θ),s)Θ(θ)

s |
∥∥∥∥

r

≤ Cσ ‖θ‖L1
T,p

‖ϕ‖
∞

(
1 +

∥∥∥∥∥‖X‖
∞
e
− r

2‖Θ
r ‖2

L2
T,q

+
R T
0 〈Θs

r
,dWs〉

∥∥∥∥∥
r

)
,

≤ Cσ ‖θ‖L1
T,p

‖ϕ‖
∞

(
1 + e

‖ϕ‖∞
2rr′

‖θ‖2

L2
T,p ‖‖X‖

∞
‖

r(1+r′)

)
,

≤ Cr,b,σ,ϕ ‖θ‖L2
T,p
,
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for every r > 0 (Assumption (Hb,σ) implies that ‖‖X‖
∞
‖

r
< +∞ for every r > 0). Following the

same proof to the bounded case, we obtain easily the results with Ψλ,η(θ, ξ) = e
−(‖ϕ‖∞+η)‖θ‖

L2
T,p

1+‖ϕ(.,ξ.)θ‖2λ+η

L2
T,q

.

We conclude by noting that η is an arbitrary parameter to cancel the denominator. ♦

Remark. If the functional F is bounded (λ = 0), we prove in the same way that the algorithm
without correction, i.e. build with Ψλ,η = 1, a.s. converges.

4 Additional remarks

For the sake of simplicity we focus in this section on importance sampling by mean translation in a
finite dimensional setting (Section 2.3) although most of the comments below can also be applied
at least in the path-dependent diffusions setting.

4.1 Purely adaptive approach

As proved by Arouna (see [2]), we can consider a purely adaptive approach to reduce the vari-
ance. It consists to perform the Robbins-Monro algorithm simultaneously with the Monte Carlo
approximation. More precisely, estimate E[F (X)] by

SN =
1

N

N∑

k=1

F (Xk + θk−1)
p(Xk + θk−1)

p(Xk)

where Xk is the same innovation as that used in the Robbins-Monro procedure θk = θk−1 −
γkH(θk−1,Xk). This adaptive Monte Carlo procedure satisfies a Central Limit Theorem with the
optimal asymptotic variance

√
N (SN − E[F (X)])

L−→ N (0, σ2
∗), whith σ2

∗ = V (θ∗) − E[F (X)]2 .

This approach can be extended to the Esscher transform when we use the same innovation ξk
(see (2.16)) for the Monte Carlo procedure (computing X

(θk−1)
k = g(θk−1, ξk)) and the Robbins-

Monro algorithm (computing X
(−θk−1)
k = g(−θk−1, ξk)). Likewise in the functional setting we

can combine the variance reduction procedure and the Monte Carlo simulations using the same
Brownian motion.

In practice, it is not clear that this adaptive Monte Carlo is better than the naive two stage
procedure: performing first Robbins-Monro with a small number of iterations (to get a rough
estimate θ∗), then performing the Monte Carlo simulations with this optimized parameter.

4.2 Weak rate of convergence: Central Limit Theorem (CLT)

As concerns the rate of convergence, once again this a regular stochastic algorithm behaves as
described in usual Stochastic Approximation Theory textbooks like [13], [5], [8]. So, as soon as
the optimal variance reducer set is reduced to a single point θ∗, the procedure satisfies under quite
standard assumptions a CLT . We will not enter into technicalities at this stage but only try to

emphasize the impact of a renormalization factor g(θ) like g(θ) := e−
λ
2
|θ|b or g(θ) := 1

1+ eF (−θ)2
induced by the function F on the “final” rate of convergence of the algorithm toward θ∗. We will

assume that d = 1 and that X
d
= N (0; 1) for the sake of simplicity. One can write

H(θ, x) = g(θ)H0(θ, x) where H0(θ, x) = F 2(x− θ)(2θ − x)

20



The function H0 corresponds to the case of a bounded function F (then λ = 0). Under simple
integration assumptions, one shows that V is twice differentiable and that

V ′′(θ) = e
|θ|2

2 E

[
F 2(X)e−θX

(
1 + (θ −X)2

)]

Consequently the mean functions h and h0 related to H and H0 which read respectively

h(θ) = g(θ)e−|θ|2V ′(θ) and h0(x) = e−|θ|2V ′(θ)

are differentiable at θ∗ and

h′(θ∗) = g(θ∗)e−|θ∗|2V ′(θ∗) and h′0(θ
∗) = e−|θ∗|2V ′(θ∗)

Now, general results about CLT say that if γn = α
β+n , α, β > 0 with

α >
1

2h′(θ∗)
=

1

2g(θ∗)h′0(θ
∗)

(4.30)

then √
n(θn − θ∗)

Lstably−→ N (0;Σ∗
α)

where

Σ∗
α = Var(H(y∗, Z))

α2

2αh′(y∗) − 1
. (4.31)

The mapping α 7→ Σα reaches its minimum at α∗ = 1
h′(θ∗) = 1

g(θ∗)h′0(θ∗) leading to the minimal

asymptotic variance

Σ∗ = Σ∗
α∗ =

Var(H(y∗, Z))

h′(y∗)2
=

E
[
H0(y

∗, Z)2
]

h′0(y
∗)2

=
E
[
F 4(X)(θ∗ −X)2e−θ

∗X
]

E[F 2(X)(X2 − θ∗X + 1)]2

by homogeneity.
So the optimal rate of convergence of the procedure is not impacted by the use of the nor-

malizing function g(θ). However, coming back to condition (4.30), we see that this assumption
on the coefficient α is more stringent since 1

g(θ∗) > 1 (in practice this factor can be rather large).

Consequently, given the fact that g(θ∗) is unknown to the user, this will induce a blind choice of
α biased to higher values. With the well-known consequence in practice that if α is too large the
“CLT regime” will take place later than it would with smaller values. One solution to overcome
this contradiction can be to make α depend on n and slowly decrease.

As a conclusion, the algorithm never explodes (and converges) even for strongly unbounded
functions F which is a major asset compared to the version of the algorithm based on repeated
projections. Nevertheless, the normalizing factor which ensures the non-explosion of the procedure
may impact the rate of convergence since it has an influence on the tuning of the step sequence
(which is always more or less “blind” since it depends on the target θ∗. In fact, we did not meet
such difficulty in our numerical experiments reported below.

One classical way to overcome this problem can be to introduce the empirical mean of the
algorithm implemented with a slowly decreasing step “à la Rupert & Poliak” (see e.g. [17]): Set
γn = c

nr , 1
2 < r < 1 and

θ̄n+1 :=
θ0 + · · · + θn

n+ 1
= θ̄n −

1

n+ 1
(θ̄n − θn), n ≥ 0

where (θn)n≥0 denotes the regular Robbins-Monro algorithm defined by (2.14) starting at θ0. Then
(θ̄n)n≥0 converges toward θ∗ and satisfies a CLT with the optimal asymptotic variance (4.31). See
also a variant based on a gliding window developed in [14].
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4.3 Extension to more general sets of parameters

In many applications (see below with the Spark spread options with the NIG distribution) the
natural set of parameters Θ is not Rq but an open connected subset of Rq. Nevertheless, as
illustrated below, our unconstrained approach still works provided one can proceed a diffeomorphic
change of parameter by setting

θ = T (θ̃), θ∈ Θ

where T : Rq → Θ is a C1-diffeomorphism with a bounded differential (i.e. supθ̃ |‖DT (θ̃)|‖ < +∞).
As an illustration, let us consider the case where the state function H(θ,X) of the procedure
is designed so that h(θ) := E(H(θ,X)) = ρ(θ)∇V (θ) where V is the objective function to be
minimized over Θ and ρ is a bounded positive Borel function. Then, one replaces H(θ,X) by
H̃(θ̃,X) := DT (θ̃).H(T (θ̃),X) and defines recursively a procedure on Rq by

θ̃n+1 = θ̃n − γn+1H̃(θ̃n,Xn+1).

In order to establish the a.s. convergence of θn := T (θ̃n) to ArgminV , one relies on a variant of
Robbins-Monro algorithm, namely a stochastic gradient approach (see [8, 13] for further details):
one defines U(θ̃) = V (T (θ̃)) which turns out to be a Lyapunov function for the new algorithm since

〈∇U(θ̃),E(DT (θ̃)H(T (θ̃),X))〉 = ρ(T (θ̃))|∇U(θ̃)|2 > 0 on T−1({∇V 6= 0}).
If U satisfies ‖H̃(θ̃,X)‖2 +|∇U(θ̃)| ≤ C(1+U(θ̃))

1
2 (which is a hidden constraint on the choice of T ),

one shows under the standard “decreasing” assumption on the step sequence that U(θ̃n) → U∞∈
L1(P) and

∑
n γn+1ρ(θ̃n)|∇U(θ̃n)|2 < +∞. If lim

θ→∂Θ
V (θ) = +∞ or lim inf

θ→∂Θ
ρ(T (θ))|∇V (θ)|2 > 0,

one easily derives that dist(θn, {∇V = 0}) → 0 a.s. as n→ ∞.

5 Numerical illustrations

5.1 Multidimensional setting: the NIG distribution

First we consider a simple case to compare the two algorithms of Section 2. The quantity to
compute is

E[F (X)] =

∫

R

F (x) pNIG(x;α, β, δ, µ) dx,

where pNIG(x;α, β, δ, µ) is the density of X a normal inverse gaussian (NIG) random variable of
parameters (α, β, δ, µ) i.e. α > 0, |β| ≤ α, δ > 0, µ ∈ R,

pNIG(x;α, β, δ, µ) =
αδK1

(
α
√
δ2 + (x− µ)2

)

π
√
δ2 + (x− µ)2

eδγ+β(x−µ),

where K1 is a modified Bessel function of the second kind and γ =
√
α2 − β2.

We can summarize the two algorithms presented in section 2, more precisely the variance
reduction based on translation of the density (see Subsection 2.3) and the one based on the Esscher
transform (see Subsection 2.4), by the following simplified (no computation of the variance) pseudo-
code:

Translation (see 2.3)
�
for n = 0 to M do

X ~ NIG(alpha , beta , mu , delta)

theta = theta - 1/( n+1000)* H1(theta , X)

for n = 0 to N do

X ~ NIG(alpha , beta , mu , delta)

mean = mean + F(X) * p(X+theta )/p(X)

� �

Esscher transform (see 2.4)
�
for n = 0 to M do

X ~ NIG (alpha , beta -theta , mu , delta)

theta = theta - 1/( n+1000)* H2(theta , X)

for n = 0 to N do

X ~ NIG (alpha , beta+theta , mu , delta)

mean = mean + F(X) * exp(-theta *X)

mean = mean * exp (psi(theta ))
� �
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– Translation case. We consider the function H1 of the Robbins-Monro procedure of the first
algorithm defined by

H1(θ,X) = e−2|θ|F 2(X)
p′(X − 2θ)

p(X)

(
p(X − θ)

p(X − 2θ)

)2

,

where an analytic formulation of the derivative p′ is easily obtained using the relation on the
modified Bessel function K ′

1(x) = 1
xK1(x) −K2(x).

The assumption (Htr
a ) is satisfied with a = 1, and our results of Subsection 2.3 apply.

– Esscher transform. In the Esscher approach we consider the function H2 defined by

H2(θ,X) = e−|θ|F 2(X) (∇ψ(θ) −X) .

Note that ψ is not well defined for every θ ∈ Rd. Indeed, the cumulant generating function
of the NIG distribution is defined by

ψ(θ) = µθ + δ
(
γ −

√
α2 − (β + θ)2

)
,

for every θ ∈ (−α−β, α−β). Moreover, we need ψ(−θ) to be well defined i.e. θ ∈ (−α+β, α+
β). To take account of these restrictions, we slightly modify the algorithm parametrization

(see Subsection 4.3) θ = T (θ̃) := (β − α) θ̃√
1+θ̃2

, and update θ̃ ∈ R in the Robbins-Monro

procedure (multiply the function H2(T (θ̃),X) by the derivative T ′(θ̃) = β−α
(1+θ̃2)3/2

).

The payoff F is a Call option of strike K, F (X) = 50(eX −K)+. The parameters of the NIG
random variable X are α = 2, β = 0.2, δ = 0.8 and µ = 0.04. The variance reduction obtained for
different value of K are summarized in the tabular 1. The number of iterations in the Robbins-
Monro variance reduction procedure is M = 100 000 and the number of Monte Carlo iterations is
N = 1000 000. Note that for each strike, the prices are computed using the same pseudo-random
number generator initialized with the same seed.

K mean crude var
var. ratio. var. ratio
translation (θ) Esscher (θ)

0.6 42.19 8538 5.885 (0.791) 56.484 (1.322)
0.8 34.19 8388 7.525 (0.903) 39.797 (1.309)
1.0 27.66 8176 9.218 (0.982) 32.183 (1.294)
1.2 22.60 7930 10.068 (1.017) 29.232 (1.280)
1.4 18.76 7677 9.956 (1.026) 28.496 (1.268)

Table 1: Variance reduction for different strikes (one dimensional NIG example).

To complete this numerical example, Figure 1 illustrates the densities obtained after the Rob-
bins-Monro procedure. The deformation provided by the Esscher transform is very impressive in
this example. We remark that the Esscher transform modifies the parameter β which controls the
asymmetric shape of the NIG distribution.

Spark spread

We consider now a exchange option between gas and electricity (called spark spread). We choose
to model the price of the energy by the exponential of a NIG distribution. A simplified form of
the payoff is then

F (X) = 50(eX
elec − ceX

gas −K)+,
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Figure 1: Densities of X (crude), X + θ (translation) and X(θ) (Esscher) in the case K = 1.

where Xelec ∼ NIG(2, 0.2, 0.8, 0.04) and Xgas ∼ NIG(1.4, 0.2, 0.2, 0.04) are independent.
The results obtained for different strikes after 300 000 iterations of the Robbins-Monro procedure

and 3 000 000 iterations of Monte Carlo, are summarized in the Table 2.

K c mean crude var
var. ratio. var. ratio
translation Esscher

0.4 0.2 41.021 8540.6 5.0118 25.171
0.4 32.719 8356.9 5.1338 27.006
0.6 26.337 8112.2 4.9752 28.062
0.8 21.556 7845.3 4.7569 29.964
1 17.978 7582 4.5575 32.849

0.6 0.2 33.235 8378.4 5.2609 27.455
0.4 26.534 8133.3 5.0604 28.669
0.6 21.587 7862.7 4.8046 30.649
0.8 17.931 7595.2 4.5839 33.656
1 15.184 7344.2 4.4064 37.489

0.8 0.2 26.908 8160.1 5.1366 28.876
0.4 21.725 7884.9 4.844 31.018
0.6 17.955 7612.5 4.6031 34.166
0.8 15.156 7357.3 4.416 38.167
1 13.027 7123.9 4.2685 42.781

Table 2: Variance reduction for different strikes (spark spread example).

5.2 Functional setting: Down & In Call option

We consider a process (Xt)t≥0 solution of the following diffusion

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x0 ∈ R.

A Down & In Call option of strike K and barrier L is a Call of strike K which is activated when
the underlying X moves down and hits the barrier L. The payoff of such a European option is
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defined by
F (X) = (XT −K)+1{

min
0≤t≤T

Xt ≤ L
}.

A naive Monte Carlo approach to price this option is to consider an Euler-Maruyama scheme X̄ =
(X̄tk)k∈{0,...,n} to discretize X and to approximate min

0≤t≤T
Xt by min

k∈{0,...,n}
X̄tk . It is well known that

this approximation of the functional payoff is poor. More precisely, the weak order of convergence
cannot be greater than 1

2 (see [11]).
A standard approach is to consider the continuous Euler scheme X̄c obtained by extrapolation

of the Brownian between two instants of discretization. More precisely, for every t ∈ [tk, tk+1],

X̄c
t = X̄c

tk
+ b(X̄c

tk
)(t− tk) + σ(X̄c

tk
)(Wt −Wtk), X̄c

0 = x0 ∈ R.

By preconditioning,

E[F (X)] = E

[
(X̄T −K)+

(
1 −

N−1∏

k=0

p(X̄tk , X̄tk+1
)

)]
, (5.32)

with p(xk, xk+1) = P

[
min

t∈[tk,tk+1]
X̄c
t ≥ L

∣∣∣∣ (X̄tk , X̄tk+1
) = (xk, xk+1)

]
. Now using the Girsanov The-

orem and the law of the Brownian bridge (see for example [9]), we have

p(xk, xk+1) = 1 − P

[
min
t∈[0,t1]

Wt ≤
L− xk
σ(xk)

∣∣∣∣Wt1 =
xk+1 − xk
σ(xk)

]
,

=





0 if L ≥ min(xk, xk+1),

1 − e
− 2(L−xk)(L−xk+1)

σ2(xk)(tk+1−tk) , otherwise.

(5.33)

In the following simulations we consider an Euler scheme of step tk = k Tn with n = 100.

Deterministic case (trivial driver ϕ ≡ 1)

We consider three different basis of L2([0, 1],R)

– a polynomial basis composed of the shifted Legendre polynomials P̃n(t) defined by

∀n ≥ 0,∀t ∈ [0, 1], P̃n(t) = Pn(2t− 1) where Pn(t) =
1

2nn!

dn

dtn
(
(t2 − 1)n

)
. (ShLeg)

– the Karhunen-Loève basis defined by

∀n ≥ 0,∀t ∈ [0, 1], en(t) =
√

2 sin

((
n+

1

2

)
πt

)
(KL)

– the Haar basis defined by

∀n ≥ 0,∀k = 0, . . . , 2n − 1,∀t ∈ [0, 1], ψn,k(t) = 2
k
2ψ(2kt− n) (Haar)

where ψ(t) =





1 if t ∈ [0, 1
2 )

−1 if t ∈ [12 , 1)

0 otherwise
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Black&Scholes Model
First, we consider the classical Black&Scholes model. We set the interest rate r to 4% and the
volatility σ to 70% (which is a high volatility). The strike of the payoff F is set at K = 115 and
the barrier level at L = 65. A crude Monte Carlo (with Brownian bridge interpolation, see (5.32))
give a price of 2.596 with a variance of 230 after 500 000 trials. Note that the true price of this
product is 2.554.

For different basis, the results of our algorithm are summarized in the table 5.2. In the Robbins-
Monro procedure, we define the step sequence by γn = 1

n+10x2
0

and set the number of iterations at

50 000.

Basis Dim. Mean CI 95% Variance ratio

Constant 1 2.5737 ±0.0230 3.4710

ShiftLegendre 2 2.5741 ±0.0197 4.7225
(ShLeg) 4 2.5717 ±0.0193 4.9478

8 2.5717 ±0.0193 4.9494

Karhunen-Loève 2 2.5678 ±0.0164 6.8644
(KL) 4 2.5729 ±0.0160 7.1851

8 2.5705 ±0.0156 7.5218

Haar 2 2.5657 ±0.0192 4.9710
(Haar) 4 2.5671 ±0.0163 6.9459

8 2.5663 ±0.0155 7.6574

Table 3: Variance ratio obtained for different basis in the Black&Scholes model (K = 115, L = 65,
variance of the crude Monte Carlo: 230).

In figure 2 are depicted the optimal variance reducer when the optimization of V is carried out
on Em for several values of m (2, 4 and 8) in the different basis mentioned above.

A local volatility Model
To emphasize the generic feature of our algorithm we consider the same product in a local volatility
model (inspired by the CEV model) defined by

dxt = rxt dt+ σxβt
xt√

1 + x2
t

dWt, (5.34)

with r = 0.04, σ = 7 and β = 0.5.
The price of the Down & In Call (strike 115, barrier 65) given by a crude Monte Carlo with

Brownian interpolation after 500 000 trials is 3.194 and the variance is 206.52.

Adaptive case (non-trivial driver)

We experiment now our algorithm with a non-trivial driver ϕ defined for t = tk by

ϕ(t, ξt) =
(
p̄k 1 − p̄k

)
, with p̄k =

k−1∏

j=0

p(ξtj , ξtj+1),

where p is defined by (5.33). Note that p̄k = P
[
mint∈[0,tk] ξt ≥ L

∣∣ ξ0, . . . , ξtk
]

so that there is no
extra-computation compared to the Brownian bridge interpolation.

We set p = 2 and E = (R1I[0,T ])
2 so that the optimal parameter θtk = αp̄k + β(1 − p̄k) with

(α, β) ∈ R2. The results for different strikes and barrier levels are reported in Table 5 for the
Black&Scholes model and in Table 6 for the local volatility model. The simulation parameters are
unchanged.
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Figure 2: Optimal θ process obtained with different basis by our algorithm using 50 000 trials.

Basis Dim. Mean CI 95% Variance ratio

Constant 1 3.1836 ±0.0251 2.6297

ShiftLegendre 2 3.1830 ±0.0223 3.3258
(ShLeg) 4 3.1815 ±0.0215 3.5670

8 3.1813 ±0.0215 3.5659

Karhunen-Loève 2 3.1852 ±0.0187 4.7254
(KL) 4 3.1862 ±0.0183 4.9385

8 3.1918 ±0.0178 5.2183

Haar 2 3.1834 ±0.0215 3.5699
(Haar) 4 3.1871 ±0.0186 4.7896

8 3.1864 ±0.0177 5.2675

Table 4: Variance ratio obtained for different basis in the local volatility model (5.34) (K = 115,
L = 65, variance of the crude Monte Carlo: 206.52).
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[3] N. Bouleau, D. Lépingle (1994). Numerical methods for stochastic processes, Wiley Se-
ries in Probability and Mathematical Statistics: Applied Probability and Statistics. A Wiley-
Interscience Publication. John Wiley & Sons, Inc., New York, 359 pp. ISBN: 0-471-54641-0.

[4] B. Arouna, O. Bardou (2004). Efficient variance reduction for functionals of diffusions by
relative entropy, technical report, CERMICS-ENPC (France).

[5] M. Benveniste, M. Métivier, P. Priouret (1990). Adaptive algorithms and stochastic
approximation, 22, Applications of Mathematics, transl. from French by S. Wilson, Springer-
Verlag, Berlin.

[6] H. Chen, Y. Zhu (1986). Stochastic Approximation Procedure with randomly varying trunca-
tions, Scientia Sinica Series.

28



[7] H. F. Chen, G. Lei, A.J. Gao (1988). Convergence and robustness of the Robbins-Monro
algorithm truncated at randomly varying bounds, Stoch. Proc. Appl., 27(2), 217–231.

[8] M. Duflo (1997). Iterative random models, transl. from French, Springer-Verlag.

[9] P. Glasserman (2004). Monte Carlo Methods in Financial Engineering, Springer.

[10] P. Glasserman, P. Heidelberger, P. Shahabuddin (1999). Asymptotically optimal im-
portance sampling and stratification for pricing path-dependent options. Math. Finance 9(2),
no. 2, 117–152.

[11] E. Gobet (2000). Weak approximation of killed diffusion using Euler schemes, Stoch. Proc.
Appl., 87(2), 167–197.

[12] R. Kawai (2008). Optimal importance sampling parameter search for Lévy Processes via
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6 Appendix: proof of Theorem 1

We propose below the proof of the slight extension of the regular Robbins-Monro algorithm when
{h = 0} is not reduced to a single equilibrium point. The key is still the convergence theorem for
non negative super-martingales.

Proof. Set Fn := σ(θ0, Z1, . . . , Zn), n ≥ 1. Let θ∗∈ T ∗. Then

|θn+1 − θ∗|2 = |θn − θ∗|2 − 2γn+1〈θn − θ∗,H(θn, Zn+1)〉 + γ2
n+1|H(θn, Zn+1)|2,

≤ |θn − θ∗|2 − 2γn+1〈θn − θ∗, h(θn)〉 − 2γn+1〈θn − θ∗,∆Mn+1〉 + γ2
n+1|H(θn, Zn+1)|2,

(6.35)

where
∆Mn+1 = H(θn, Zn+1) − E[H(θn, Zn+1) | Fn] = H(θn, Zn+1) − h(θn),

is an increment of (local) martingale satisfying E
[
|∆Mn+1|2

]
≤ C(1 + E

[
|θn − θ∗|2

]
) owing to the

assumptions on H and Schwarz Inequality which also implies that

E[|〈θn − θ∗,H(θn, Zn+1〉|] ≤
1

2

(
E
[
|θn − θ∗|2

]
+ E

[
|H(θn, Zn+1)|2

])
≤ C(1 + E

[
|θn − θ∗|2

]
,
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for an appropriate real constant C. Then, one shows by induction on n from (6.35) that |θn| is
square integrable for every n ≥ 0 and that ∆Mn+1 is integrable, hence a true martingale increment.
Now, one derives from the assumptions (2.6) and (6.35) that

Sn =
|θn − θ∗|2 + 2

∑n−1
k=0 γk+1〈θk − θ∗, h(θk)〉 + C

∑
k≥n+1 γ

2
k∏n

k=1(1 + Cγ2
k)

,

is a (non negative) super-martingale with S0 = |θ0 − θ∗|2 ∈ L1(P). This uses the mean-reverting
assumption (2.5). Hence Sn is P-a.s. converging toward an integrable r.v. S∞ . Consequently, using
that

∑
k≥n+1 γ

2
k → 0, one gets

|θn − θ∗|2 + 2

n−1∑

k=0

γk+1〈θk − θ∗, h(θk)〉 a.s.−→ S̃∞ = S∞

∏

n≥1

(1 + C
L
γ2
n)∈ L1(P). (6.36)

The super-martingale (Sn) being L1-bounded, one derives likewise that (|θn−θ∗|2)n≥0 is L1-bounded
since

|θn − θ∗|2 ≤
n∏

k=1

(1 + CLγ
2
k)Sn, n ≥ 0.

Now, a series with nonnegative terms which is upper bounded by an (a.s.) converging sequence,
a.s. converges in R+ so that

∑

n≥0

γn+1〈θn − θ∗, h(θn)〉 < +∞ P-a.s.

It follows from (6.36) that, P-a.s., |θn − θ∗|2 n→∞−→ L∞ which is integrable since (|θn − θ∗|2)n≥0 is
L1-bounded and consequently a.s. finite.

Let L > 0. Set
Ω

L
:= {ω∈ Ω, ∀n ≥ 0, |θn(ω) − θ∗| ≤ L} .

It follows from the a.s. finiteness of L∞ that
⋃
L>0 Ω

L
= Ω a.s.. Now we consider the compact set

K
L

= T ∗∩ B̄(0, L). It is separable so there exists an everywhere dense sequence in K
L
, denoted for

convenience (θ∗,k)k≥1. The above proof shows that P-a.s., for every k ≥ 1, |θn−θ∗,k|2 → Lk
∞
< +∞

as n→ ∞. Then set

Ω′
L

:=



ω∈ Ω

L
, |θn(ω) − θ∗,k|2 n→∞→ Lk

∞
(ω), k ≥ 1,

∑

n≥1

γn〈θn−1(ω) − θ∗, h(θn−1(ω)〉 < +∞





which satisfies P(Ω′
L
) = P(Ω

L
). Assume ω ∈ Ω′

L
. Up to two successive extractions, there exists a

subsequence θφ(n,ω) such that

〈θφ(n,ω) − θ∗, h(θφ(n,ω)(ω))〉 n→∞−→ 0 and θφ(n,ω)(ω)
n→∞−→ θ∞(ω).

The function h being continuous 〈θ∞(ω) − θ∗, h(θ∞(ω))〉 = 0 which implies that θ∞(ω)∈ {h = 0}.
Hence θ∞(ω)∈ K

L
. Then any limiting value θ′

∞
(ω) of the sequence (θn(ω))n≥1 will satisfy

∀ k ≥ 1, |θ′
∞

(ω) − θ∗,k| = |θ∞(ω) − θ∗,k| =
√
Lk

∞
(ω)

which in turn implies that θ′
∞

(ω) = θ∞(ω) by considering a subsequence θ∗,k
′ → θ∞(ω). So, θ∞(ω)

is the unique limiting value of the sequence (θn(ω))n≥0 i.e. θn(ω) → θ∞(ω) as n → ∞. The fact
that the resulting random vector θ∞ is square integrable follows from Fatou’s Lemma and the
L2-boundedness of the sequence (θn − θ∗)n≥1. ♦
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