96 research outputs found

    Measurement of the neutron electric dipole moment via spin rotation in a non-centrosymmetric crystal

    Full text link
    We have measured the neutron electric dipole moment using spin rotation in a non-centrosymmetric crystal. Our result is d_n = (2.5 +- 6.5(stat) +- 5.5(syst)) 10^{-24} e cm. The dominating contribution to the systematic uncertainty is statistical in nature and will reduce with improved statistics. The statistical sensitivity can be increased to 2 10^{-26} e cm in 100 days data taking with an improved setup. We state technical requirements for a systematic uncertainty at the same level.Comment: submitted to Phys. Lett.

    Extended skyrmion lattice scattering and long-time memory in the chiral magnet Fe1−x_{1-x}Cox_xSi

    Full text link
    Small angle neutron scattering measurements on a bulk single crystal of the doped chiral magnet Fe1−x_{1-x}Cox_xSi with xx=0.3 reveal a pronounced effect of the magnetic history and cooling rates on the magnetic phase diagram. The extracted phase diagrams are qualitatively different for zero and field cooling and reveal a metastable skyrmion lattice phase outside the A-phase for the latter case. These thermodynamically metastable skyrmion lattice correlations coexist with the conical phase and can be enhanced by increasing the cooling rate. They appear in a wide region of the phase diagram at temperatures below the AA-phase but also at fields considerably smaller or higher than the fields required to stabilize the A-phase

    Magnetic Fluctuations, Precursor Phenomena and Phase Transition in MnSi under Magnetic Field

    Get PDF
    The reference chiral helimagnet MnSi is the first system where skyrmion lattice correlations have been reported. At zero magnetic field the transition at TCT_C to the helimagnetic state is of first order. Above TCT_C, in a region dominated by precursor phenomena, neutron scattering shows the build up of strong chiral fluctuating correlations over the surface of a sphere with radius 2Ï€/â„“2\pi/\ell, where â„“\ell is the pitch of the helix. It has been suggested that these fluctuating correlations drive the helical transition to first order following a scenario proposed by Brazovskii for liquid crystals. We present a comprehensive neutron scattering study under magnetic fields, which provides evidence that this is not the case. The sharp first order transition persists for magnetic fields up to 0.4 T whereas the fluctuating correlations weaken and start to concentrate along the field direction already above 0.2 T. Our results thus disconnect the first order nature of the transition from the precursor fluctuating correlations. They also show no indication for a tricritical point, where the first order transition crosses over to second order with increasing magnetic field. In this light, the nature of the first order helical transition and the precursor phenomena above TCT_C, both of general relevance to chiral magnetism, remain an open question

    Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of Fe1−x_{1-x}Cox_xSi

    Full text link
    We present a comprehensive Small Angle Neutron Scattering (SANS) and Neutron Spin Echo Spectroscopy (NSE) study of the structural and dynamical aspects of the helimagnetic transition in Fe1−x_{1-x}Cox_xSi with xx = 0.30. In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1−x_{1-x}Cox_xSi is gradual and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1−x_{1-x}Cox_xSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets

    Magnetic Fluctuations and Correlations in MnSi - Evidence for a Skyrmion Spin Liquid Phase

    Full text link
    We present a comprehensive analysis of high resolution neutron scattering data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which confirm the first order nature of the helical transition and reveal the existence of a new spin liquid skyrmion phase. Similar to the blue phases of liquid crystals this phase appears in a very narrow temperature range between the low temperature helical and the high temperature paramagnetic phases.Comment: 11 pages, 16 figure

    On the sign of the linear magnetoelectric coefficient in Cr2_2O3_3

    Full text link
    We establish the sign of the linear magnetoelectric (ME) coefficient, α\alpha, in chromia, Cr2_2O3_3. Cr2_2O3_3 is the prototypical linear ME material, in which an electric (magnetic) field induces a linearly proportional magnetization (polarization), and a single magnetic domain can be selected by annealing in combined magnetic (H) and electric (E) fields. Opposite antiferromagnetic domains have opposite ME responses, and which antiferromagnetic domain corresponds to which sign of response has previously been unclear. We use density functional theory (DFT) to calculate the magnetic response of a single antiferromagnetic domain of Cr2_2O3_3 to an applied in-plane electric field at 0 K. We find that the domain with nearest neighbor magnetic moments oriented away from (towards) each other has a negative (positive) in-plane ME coefficient, α⊥\alpha_{\perp}, at 0 K. We show that this sign is consistent with all other DFT calculations in the literature that specified the domain orientation, independent of the choice of DFT code or functional, the method used to apply the field, and whether the direct (magnetic field) or inverse (electric field) ME response was calculated. Next, we reanalyze our previously published spherical neutron polarimetry data to determine the antiferromagnetic domain produced by annealing in combined E and H fields oriented along the crystallographic symmetry axis at room temperature. We find that the antiferromagnetic domain with nearest-neighbor magnetic moments oriented away from (towards) each other is produced by annealing in (anti-)parallel E and H fields, corresponding to a positive (negative) axial ME coefficient, α∥\alpha_{\parallel}, at room temperature. Since α⊥\alpha_{\perp} at 0 K and α∥\alpha_{\parallel} at room temperature are known to be of opposite sign, our computational and experimental results are consistent.Comment: 11 pages, 5 figure

    Multiple low-temperature skyrmionic states in a bulk chiral magnet

    Get PDF
    Magnetic skyrmions are topologically protected nanoscale spin textures with particle-like properties. In bulk cubic helimagnets, they appear under applied magnetic fields and condense spontaneously into a lattice in a narrow region of the phase diagram just below the magnetic ordering temperature, the so-called A-phase. Theory, however, predicts skyrmions to be locally stable in a wide range of magnetic fields and temperatures. Our neutron diffraction measurements reveal the formation of skyrmion states in large areas of the magnetic phase diagram, from the lowest temperatures up to the A-phase. We show that nascent and disappearing spiral states near critical lines catalyze topological charge changing processes, leading to the formation and destruction of skyrmionic states at low temperatures, which are thermodynamically stable or metastable depending on the orientation and strength of the magnetic field. Skyrmions are surprisingly resilient to high magnetic fields: the memory of skyrmion lattice states persists in the field polarized state, even when the skyrmion lattice signal has disappeared. These findings highlight the paramount role of magnetic anisotropies in stabilizing skyrmionic states and open up new routes for manipulating these quasi-particles towards energy-efficient spintronics applications

    Magnetization jump in the XXZ chain with next-nearest-neighbor exchange

    Full text link
    We study the dependence of the magnetization M with magnetic field B at zero temperature in the spin-1/2 XXZ chain with nearest-neighbor (NN) J1 and next-NN J2 exchange interactions, with anisotropies Delta1 and Delta2 respectively. The region of parameters for which a jump in M(B) exists is studied using numerical diagonalization, and analytical results for two magnons on a ferromagnetic background in the thermodynamic limit. We find a line in the parameter space (J2/J1, Delta1/J1, Delta2/J2) (determined by two simple equations) at which the ground state is highly degenerate. M(B) has a jump near this line, and at or near the isotropic case with ferromagnetic J1 and antiferromagnetic J2, with |J2/J1| near 1/4. These results are relevant for some systems containing CuO chains with edge-sharing CuO4 units.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Elucidating Individual Magnetic Contributions in Bi-Magnetic Fe3O4/Mn3O4 Core/Shell Nanoparticles by Polarized Powder Neutron Diffraction

    Get PDF
    Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3O4/Mn3O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3O4 and Mn3O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials
    • …
    corecore