267 research outputs found

    A multiple replica approach to simulate reactive trajectories

    Full text link
    A method to generate reactive trajectories, namely equilibrium trajectories leaving a metastable state and ending in another one is proposed. The algorithm is based on simulating in parallel many copies of the system, and selecting the replicas which have reached the highest values along a chosen one-dimensional reaction coordinate. This reaction coordinate does not need to precisely describe all the metastabilities of the system for the method to give reliable results. An extension of the algorithm to compute transition times from one metastable state to another one is also presented. We demonstrate the interest of the method on two simple cases: a one-dimensional two-well potential and a two-dimensional potential exhibiting two channels to pass from one metastable state to another one

    Extended skyrmion lattice scattering and long-time memory in the chiral magnet Fe1−x_{1-x}Cox_xSi

    Full text link
    Small angle neutron scattering measurements on a bulk single crystal of the doped chiral magnet Fe1−x_{1-x}Cox_xSi with xx=0.3 reveal a pronounced effect of the magnetic history and cooling rates on the magnetic phase diagram. The extracted phase diagrams are qualitatively different for zero and field cooling and reveal a metastable skyrmion lattice phase outside the A-phase for the latter case. These thermodynamically metastable skyrmion lattice correlations coexist with the conical phase and can be enhanced by increasing the cooling rate. They appear in a wide region of the phase diagram at temperatures below the AA-phase but also at fields considerably smaller or higher than the fields required to stabilize the A-phase

    Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of Fe1−x_{1-x}Cox_xSi

    Full text link
    We present a comprehensive Small Angle Neutron Scattering (SANS) and Neutron Spin Echo Spectroscopy (NSE) study of the structural and dynamical aspects of the helimagnetic transition in Fe1−x_{1-x}Cox_xSi with xx = 0.30. In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1−x_{1-x}Cox_xSi is gradual and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1−x_{1-x}Cox_xSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets

    Effective dynamics using conditional expectations

    Full text link
    The question of coarse-graining is ubiquitous in molecular dynamics. In this article, we are interested in deriving effective properties for the dynamics of a coarse-grained variable ξ(x)\xi(x), where xx describes the configuration of the system in a high-dimensional space Rn\R^n, and ξ\xi is a smooth function with value in R\R (typically a reaction coordinate). It is well known that, given a Boltzmann-Gibbs distribution on x∈Rnx \in \R^n, the equilibrium properties on ξ(x)\xi(x) are completely determined by the free energy. On the other hand, the question of the effective dynamics on ξ(x)\xi(x) is much more difficult to address. Starting from an overdamped Langevin equation on x∈Rnx \in \R^n, we propose an effective dynamics for ξ(x)∈R\xi(x) \in \R using conditional expectations. Using entropy methods, we give sufficient conditions for the time marginals of the effective dynamics to be close to the original ones. We check numerically on some toy examples that these sufficient conditions yield an effective dynamics which accurately reproduces the residence times in the potential energy wells. We also discuss the accuracy of the effective dynamics in a pathwise sense, and the relevance of the free energy to build a coarse-grained dynamics

    Elucidation of the metabolites of the novel psychoactive substance 4-methyl-N-ethyl-cathinone (4-MEC) in human urine and pooled liver microsomes by GC-MS & LC-HR-MS/MS techniques and of its detectability by GC-MS or LC-MS(n) standard screening approaches

    Get PDF
    4-methyl-N-ethcathinone (4-MEC), the N-ethyl homologue of mephedrone, is a novel psychoactive substance of the beta-keto amphetamine (cathinone) group. The aim of the present work was to study the phase I and phase II metabolism of 4-MEC in human urine as well as in pooled human liver microsome (pHLM) incubations. The urine samples were worked up with and without enzymatic cleavage, the pHLM incubations by simple deproteinization. The metabolites were separated and identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS). Based on the metabolites identified in urine and/or pHLM, the following metabolic pathways could be proposed: reduction of the keto group, N-deethylation, hydroxylation of the 4-methyl group followed by further oxidation to the corresponding 4-carboxy metabolite, and combinations of these steps. Glucuronidation could only be observed for the hydroxy metabolite. These pathways were similar to those described for the N-methyl homologue mephedrone and other related drugs. In pHLM, all phase I metabolites with the exception of the N-deethyl-dihydro isomers and the 4-carboxy-dihydro metabolite could be confirmed. Glucuronides could not be formed under the applied conditions. Although the taken dose was not clear, an intake of 4-MEC should be detectable in urine by the GC-MS and LC-MS(n) standard urine screening approaches at least after overdose

    Metamagnetism in the XXZ model with next-to-nearest-neighbor coupling

    Full text link
    We investigate groundstate energies and magnetization curves in the one dimensional XXZ-model with next to nearest neighbour coupling α>0\alpha>0 and anisotropy Δ\Delta (−1≤Δ≤1-1 \le \Delta \le 1) at T=0. In between the familiar ferro- and antiferromagnetic phase we find a transition region -- called metamagnetic phase -- where the magnetization curve is discontinuous at a critical field Bc(α,Δ)B_c(\alpha,\Delta).Comment: LaTeX file (text) + 5 PS files (5 figures

    Research priorities to increase vaccination coverage in Europe (EU joint action on vaccination)

    Get PDF
    BACKGROUND: Deciding how best to invest in healthcare is never an easy task and prioritization is therefore an area of great interest for policymakers. Too low public vaccine confidence, which results in insufficient vaccine uptake, remains an area of concern for EU policy-makers. Within the European Joint action on vaccination, a work-package dedicated to research aims to define tools and methods for priority-setting in the field of vaccination research. We therefore propose a prioritization framework to identify research priorities towards generating and synthesizing evidence to support policies and strategies aiming at increasing vaccine coverage. MATERIALS/METHODS: We used a multi-criteria decision analysis (MCDA) method inspired by the Child Health and Nutrition Research Initiative developed by Rudan et al. This quantitative methodology follows a series of steps involving different groups of experts and relevant stakeholders. The first step consists in identifying key research questions through a broad consultation. In parallel, a first group of experts is tasked to select criteria for prioritization of research questions, taking into consideration the ultimate goal of the exercise. Another group of experts is then requested to assess a weight to each of the criteria, using pair-wise comparisons. The final step consists in gathering experts who will assess each research question against the weighted criteria. This evaluation leads to assigning a score to each individual research question, which can then be ranked in order of priority. RESULTS: We focused our work on four pre-selected pilot vaccines (pertussis, measles containing combination vaccines, influenza and HPV). The consultation generated 124 questions, which were secondarily sorted and re-worded to obtain 27 questions to be ranked. Criteria for setting priorities were the following: accessibility, answerability, deliverability, disease prevalence/incidence, effectiveness, equity, generalization, and territory. During a final face-to-face meeting international experts ranked the 27 questions and agreed on a consensual list of six top-priorities. CONCLUSIONS: We have developed a transparent, evidence-based rigorous framework to defined key research questions to generate evidence towards the design of policies and strategies to increase vaccine coverage. Results were disseminated broadly and submitted to the EC for potential funding in the context of The Horizon Europe Program. The same process will be conducted in 2021 to identify vaccination research priorities regarding all vaccines used in the EU as well as COVID-19 vaccines

    The nuclear structural protein NuMA is a negative regulator of 53BP1 in DNA double-strand break repair

    Get PDF
    P53-binding protein 1 (53BP1) mediates DNA repair pathway choice and promotes checkpoint activation. Chromatin marks induced by DNA double-strand breaks and recognized by 53BP1 enable focal accumulation of this multifunctional repair factor at damaged chromatin. Here, we unveil an additional level of regulation of 53BP1 outside repair foci. 53BP1 movements are constrained throughout the nucleoplasm and increase in response to DNA damage. 53BP1 interacts with the structural protein NuMA, which controls 53BP1 diffusion. This interaction, and colocalization between the two proteins in vitro and in breast tissues, is reduced after DNA damage. In cell lines and breast carcinoma NuMA prevents 53BP1 accumulation at DNA breaks, and high NuMA expression predicts better patient outcomes. Manipulating NuMA expression alters PARP inhibitor sensitivity of BRCA1-null cells, end-joining activity, and immunoglobulin class switching that rely on 53BP1. We propose a mechanism involving the sequestration of 53BP1 by NuMA in the absence of DNA damage. Such a mechanism may have evolved to disable repair functions and may be a decisive factor for tumor responses to genotoxic treatments

    Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force

    Full text link
    We discuss the ergodic properties of quasi-Markovian stochastic differential equations, providing general conditions that ensure existence and uniqueness of a smooth invariant distribution and exponential convergence of the evolution operator in suitably weighted L∞L^{\infty} spaces, which implies the validity of central limit theorem for the respective solution processes. The main new result is an ergodicity condition for the generalized Langevin equation with configuration-dependent noise and (non-)conservative force
    • …
    corecore