752 research outputs found
Spin-orbit resonances and rotation of coorbital bodies in quasi-circular orbits
The rotation of asymmetric bodies in eccentric Keplerian orbits can be
chaotic when there is some overlap of spin-orbit resonances. Here we show that
the rotation of two coorbital bodies (two planets orbiting a star or two
satellites of a planet) can also be chaotic even for quasi-circular orbits
around the central body. When dissipation is present, the rotation period of a
body on a nearly circular orbit is believed to always end synchronous with the
orbital period. Here we demonstrate that for coorbital bodies in quasi-circular
orbits, stable non-synchronous rotation is possible for a wide range of mass
ratios and body shapes. We further show that the rotation becomes chaotic when
the natural rotational libration frequency, due to the axial asymmetry, is of
the same order of magnitude as the orbital libration frequency
Exploring the formation by core accretion and the luminosity evolution of directly imaged planets: The case of HIP 65426 b
A low-mass companion to the two-solar mass star HIP65426 has recently been
detected by SPHERE at around 100 au from its host. Explaining the presence of
super-Jovian planets at large separations, as revealed by direct imaging, is
currently an open question.
We want to derive statistical constraints on the mass and initial entropy of
HIP65426b and to explore possible formation pathways of directly imaged objects
within the core-accretion paradigm, focusing on HIP65426b.
Constraints on the planet's mass and post-formation entropy are derived from
its age and luminosity combined with cooling models. For the first time, the
results of population synthesis are also used to inform the results. Then, a
formation model that includes N-body dynamics with several embryos per disc is
used to study possible formation histories and the properties of possible
additional companions. Finally, the outcomes of two- and three-planet
scattering in the post-disc phase are analysed, taking tides into account.
The mass of HIP65426b is found to be Mp = 9.9 +1.1 -1.8 MJ using the hot
population and Mp = 10.9 +1.4 -2.0 MJ with the cold-nominal population. Core
formation at small separations from the star followed by outward scattering and
runaway accretion at a few hundred AU succeeds in reproducing the mass and
separation of HIP65426b. Alternatively, systems having two or more giant
planets close enough to be on an unstable orbit at disc dispersal are likely to
end up with one planet on a wide HIP65426b-like orbit with a relatively high
eccentricity (>~ 0.5).
If this scattering scenario explains its formation, HIP65426b is predicted to
have a high eccentricity and to be accompanied by one or several roughly
Jovian-mass planets at smaller semi-major axes, which also could have a high
eccentricity. This could be tested by further direct-imaging as well as
radial-velocity observations.Comment: 17 pages, 11 figures. A&A in press. Bern EXoplanet cooling curves
(BEX) available upon request. v2: Language and other minor changes; Fig. 4
now has labels summarising a possible formation pathway discussed in the tex
Recommended from our members
Bone Marrow Microenvironment in Multiple Myeloma Progression
Substantial advances have been made in understanding the biology of multiple myeloma (MM) through the study of the bone marrow (BM) microenvironment. Indeed, the BM niche appears to play an important role in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM niche is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a noncellular compartment including the extracellular matrix (ECM) and the liquid milieu (cytokines, growth factors, and chemokines). In this paper we discuss how the interaction between the malignant plasma cell and the BM microenvironment allowed myeloma progression through cell homing and the new concept of premetastatic niche
Bipolar HII regions - Morphology and star formation in their vicinity - I - G319.8800.79 and G010.3200.15
Our goal is to identify bipolar HII regions and to understand their
morphology, their evolution, and the role they play in the formation of new
generations of stars. We use the Spitzer and Herschel Hi-GAL surveys to
identify bipolar HII regions. We search for their exciting star(s) and estimate
their distances using near-IR data. Dense clumps are detected using
Herschel-SPIRE data. MALT90 observations allow us to ascertain their
association with the central HII region. We identify Class 0/I YSOs using their
Spitzer and Herschel-PACS emissions. These methods will be applied to the
entire sample of candidate bipolar HII regions. This paper focuses on two
bipolar HII regions, one interesting in terms of its morphology,
G319.8800.79, and one in terms of its star formation, G010.3200.15. Their
exciting clusters are identified and their photometric distances estimated to
be 2.6 kpc and 1.75 kpc, respectively. We suggest that these regions formed in
dense and flat structures that contain filaments. They have a central ionized
region and ionized lobes perpendicular to the parental cloud. The remains of
the parental cloud appear as dense (more than 10^4 per cm^3) and cold (14-17 K)
condensations. The dust in the PDR is warm (19-25 K). Dense massive clumps are
present around the central ionized region. G010.32-00.14 is especially
remarkable because five clumps of several hundred solar masses surround the
central HII region; their peak column density is a few 10^23 per cm^2, and the
mean density in their central regions reaches several 10^5 per cm^3. Four of
them contain at least one massive YSO; these clumps also contain extended green
objects and Class II methanol masers. This morphology suggests that the
formation of a second generation of massive stars has been triggered by the
central bipolar HII region. It occurs in the compressed material of the
parental cloud.Comment: 32 pages, 28 figures, to be published in A&
Refining the properties of the TOI-178 system with CHEOPS and TESS
Context. The TOI-178 system consists of a nearby late K-dwarf transited by six planets in the super-Earth to mini-Neptune regime, with radii ranging from ~1.1 to 2.9 R⊕ and orbital periods between 1.9 and 20.7 days. All planets but the innermost one form a chain of Laplace resonances. Mass estimates derived from a preliminary radial velocity (RV) dataset suggest that the planetary densities do not decrease in a monotonic way with the orbital distance to the star, contrary to what one would expect based on simple formation and evolution models.
Aims. To improve the characterisation of this key system and prepare for future studies (in particular with JWST), we performed a detailed photometric study based on 40 new CHEOPS visits, one new TESS sector, and previously published CHEOPS, TESS, and NGTS data.
Methods. First we updated the parameters of the host star using the new parallax from Gaia EDR3. We then performed a global analysis of the 100 transits contained in our data to refine the physical and orbital parameters of the six planets and study their transit timing variations (TTVs). We also used our extensive dataset to place constraints on the radii and orbital periods of potential additional transiting planets in the system.
Results. Our analysis significantly refines the transit parameters of the six planets, most notably their radii, for which we now obtain relative precisions of ≲3%, with the exception of the smallest planet, b, for which the precision is 5.1%. Combined with the RV mass estimates, the measured TTVs allow us to constrain the eccentricities of planets c to g, which are found to be all below 0.02, as expected from stability requirements. Taken alone, the TTVs also suggest a higher mass for planet d than that estimated from the RVs, which had been found to yield a surprisingly low density for this planet. However, the masses derived from the current TTV dataset are very prior-dependent, and further observations, over a longer temporal baseline, are needed to deepen our understanding of this iconic planetary system
The New Generation Planetary Population Synthesis (NGPPS) VI. Introducing KOBE: Kepler Observes Bern Exoplanets
Context. Observations of exoplanets indicate the existence of several correlations in the architecture of planetary systems. Exoplanets within a system tend to be of similar size and mass, evenly spaced, and are often ordered in size and mass. Small planets are frequently packed in tight configurations, while large planets often have wider orbital spacing. Together, these correlations are called the peas in a pod trends in the architecture of planetary systems.
Aims. In this paper these trends are investigated in theoretically simulated planetary systems and compared with observations. Whether these correlations emerge from astrophysical processes or the detection biases of the transit method is examined.
Methods. Synthetic planetary system were simulated using the Generation III Bern Model. KOBE, a new computer code, simulates the geometrical limitations of the transit method and applies the detection biases and completeness of the Kepler survey. This allows simulated planetary systems to be compared with observations.
Results. The architecture of synthetic planetary systems, observed via KOBE, show the peas in a pod trends in good agreement with observations. These correlations are also present in the theoretical underlying population, from the Bern Model, indicating that these trends are probably of astrophysical origin.
Conclusions. The physical processes involved in planet formation are responsible for the emergence of evenly spaced planets with similar sizes and masses. The size–mass similarity trends are primordial and originate from the oligarchic growth of protoplanetary embryos and the uniform growth of planets at early times. Later stages in planet formation allows planets within a system to grow at different rates, thereby decreasing these correlations. The spacing and packing correlations are absent at early times and arise from dynamical interactions
Characterization of the HD 108236 system with CHEOPS and TESS Confirmation of a fifth transiting planet
Context. The HD 108236 system was first announced with the detection of four small planets based on TESS data. Shortly after, the transit of an additional planet with a period of 29.54 d was serendipitously detected by CHEOPS. In this way, HD 108236 (V = 9.2) became one of the brightest stars known to host five small transiting planets (Rp < 3 R⊕).
Aims. We characterize the planetary system by using all the data available from CHEOPS and TESS space missions. We use the flexible pointing capabilities of CHEOPS to follow up the transits of all the planets in the system, including the fifth transiting body.
Methods. After updating the host star parameters by using the results from Gaia eDR3, we analyzed 16 and 43 transits observed by CHEOPS and TESS, respectively, to derive the planets’ physical and orbital parameters. We carried out a timing analysis of the transits of each of the planets of HD 108236 to search for the presence of transit timing variations.
Results. We derived improved values for the radius and mass of the host star (R★ = 0.876 ± 0.007 R0 and M★ = 0.867-0.046+0.047M⊙). We confirm the presence of the fifth transiting planet f in a 29.54 d orbit. Thus, the HD 108236 system consists of five planets of Rb = 1.587±0.028, Rc = 2.122±0.025, Rd = 2.629 ± 0.031, Re = 3.008 ± 0.032, and Rf = 1.89 ± 0.04 [R⊕]. We refine the transit ephemeris for each planet and find no significant transit timing variations for planets c, d, and e. For planets b and f, instead, we measure significant deviations on their transit times (up to 22 and 28 min, respectively) with a non-negligible dispersion of 9.6 and 12.6 min in their time residuals.
Conclusions. We confirm the presence of planet f and find no significant evidence for a potential transiting planet in a 10.9 d orbital period, as previously suggested. Further monitoring of the transits, particularly for planets b and f, would confirm the presence of the observed transit time variations. HD 108236 thus becomes a key multi-planetary system for the study of formation and evolution processes. The reported precise results on the planetary radii – together with a profuse RV monitoring – will allow for an accurate characterization of the internal structure of these planets
- …