409 research outputs found

    In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors

    Get PDF
    B7-H1 (PD-L1) is a B7-related protein that inhibits T-cell responses. B7-H1 participates in the immunoescape of cancer cells and is also involved in the long-term persistence of leukemic cells in a mouse model of leukemia. B7-H1 can be constitutively expressed by cancer cells, but is also induced by various stimuli. Therefore, we examined the constitutive and inducible expression of B7-H1 and the consequences of this expression in human acute myeloid leukemia (AML). We analyzed B7-H1 expression in a cohort of 79 patients with AML. In addition, we studied blast cells after incubation with interferon-gamma or toll-like receptors (TLR) ligands. Finally, we evaluated functionality of cytotoxic T-cell activity against blast cells. Expression of B7-H1 upon diagnosis was high in 18% of patients. Expression of TLR2, 4 and 9 was detected in one-third of AML samples. Expression of TLR2 and TLR4 ligands or IFN-Îł induced by B7-H1 was found to protect AML cells from CTL-mediated lysis. Spontaneous B7-H1 expression was also found to be enhanced upon relapse in some patients. MEK inhibitors, including UO126 and AZD6244, reduced B7-H1 expression and restored CTL-mediated lysis of blast cells. In AML, B7-H1 expression by blasts represents a possible immune escape mechanism. The inducibility of B7-H1 expression by IFN-Îł or TLR ligands suggests that various stimuli, either produced during the immune response against leukemia cells or released by infectious microorganisms, could protect leukemic cells from T cells. The efficacy of MEK inhibitors against B7-H1-mediated inhibition of CTLs suggests a possible cancer immunotherapy strategy using targeted drugs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-010-0909-y) contains supplementary material, which is available to authorized users

    An overview of treatment options for patients with relapsed/refractory multiple myeloma and renal impairment

    Get PDF
    Renal impairment (RI) is a relatively common complication of multiple myeloma, which increases in frequency as disease becomes more advanced and recovery of renal function becomes less likely as patients progress through lines of therapy. Clinical trials in the relapsed/refractory multiple myeloma (RRMM) setting have not uniformly included patients with RI or robustly reported their outcomes. Here, we review existing data among patients with RI and RRMM across drug classes (including immunomodulatory agents, proteasome inhibitors, monoclonal antibodies, antibody-drug conjugates, chimeric antigen receptor T-cell therapies, and exportin-1 inhibitor) to provide an improved understanding of available treatment options for this important population. We highlight data from pivotal clinical trials, including data relating to renal response (as defined by the International Myeloma Working Group) and discuss real-world experiences in patients with RI, where applicable. Despite substantial advances in RRMM treatment, the presence of RI remains associated with reduced overall survival. Consistent inclusion of patients with RI, and uniform reporting of their outcomes, should be encouraged in future prospective trials of treatments for RRMM

    Development of novel oxazolo[5,4- d ]pyrimidines as competitive CB 2 neutral antagonists based on scaffold hopping

    Get PDF
    A series of novel oxazolo[5,4-d]pyrimidines was designed via a scaffold hopping strategy and synthesized through a newly developed approach. All these compounds were evaluated for their biological activity toward CB1/CB2 cannabinoid receptors, their metabolic stability in mice liver microsomes and their cytotoxicity against several cell lines. Eight compounds have been identified as CB2 ligands with Ki values less than 1â€ŻÎŒM. It is noteworthy that 2-(2-chlorophenyl)-5-methyl-7-(4-methylpiperazin-1-yl) oxazolo[5,4-d]pyrimidine 47 and 2-(2-chlorophenyl)-7-(4-ethylpiperazin-1-yl)- 5-methyloxazolo[5,4-d]pyrimidine 48 showed CB2 binding affinity in the nanomolar range and significant selectivity over CB1 receptors. Interestingly, functionality studies imply that they behave as competitive neutral antagonists. Moreover, all tested compounds are devoid of cytotoxicity toward several cell lines, including Chinese hamster ovary cells (CHO) and human colorectal adenocarcinoma cells HT29

    Synthesis and biological evaluation of ferrocene-based cannabinoid receptor 2 ligands

    Get PDF
    Ferrocene analogues of known fatty acid amide hydrolase inhibitors and CB2 ligands have been synthesized and characterized spectroscopically and crystallographically. The resulting bioorganometallic isoxazoles were assayed for their effects on CB1 and CB2 receptors as well as on FAAH. None had any FAAH activity but compound 3, 5-(2-(pentyloxy)phenyl)-N-ferrocenylisoxazole- 3-carboxamide, was found to be a potent CB2 ligand (Ki = 32.5 nM)

    Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma

    Full text link
    Published in final edited form as: Sci Transl Med. 2017 May 10; 9(389). https://doi.org/10.1126/scitranslmed.aal2668.Multiple myeloma (MM) is a frequently incurable hematological cancer in which overactivity of MYC plays a central role, notably through up-regulation of ribosome biogenesis and translation. To better understand the oncogenic program driven by MYC and investigate its potential as a therapeutic target, we screened a chemically diverse small-molecule library for anti-MM activity. The most potent hits identified were rocaglate scaffold inhibitors of translation initiation. Expression profiling of MM cells revealed reversion of the oncogenic MYC-driven transcriptional program by CMLD010509, the most promising rocaglate. Proteome-wide reversion correlated with selective depletion of short-lived proteins that are key to MM growth and survival, most notably MYC, MDM2, CCND1, MAF, and MCL-1. The efficacy of CMLD010509 in mouse models of MM confirmed the therapeutic relevance of these findings in vivo and supports the feasibility of targeting the oncogenic MYC-driven translation program in MM with rocaglates
    • 

    corecore