30 research outputs found

    Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks

    Get PDF
    During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair. © 2014 Nakajima et al

    Focusing on the premature death of redeployed miners in China: an analysis of cause-of-death information from non-communicable diseases

    No full text
    Abstract Background Reducing premature deaths is an important step towards achieving the World Health Organization’s sustainable development goal. Redeployed miners are more prone to disease or premature death due to the special occupational characteristics. Our aims were to describe the deaths of redeployed miners, assess the losses due to premature death and identify their main health problems. All the records of individuals were obtained from Fuxin Mining Area Social Security Administration Center. Year of life lost (YLL) and average year of life lost were used to assess the loss due to premature death. YLL rates per 1000 individuals were considered to compare deaths from different populations. Results Circulatory system diseases contributed the most years of life lost in the causes of death, followed by neoplasms. But average year of life lost in neoplasms was 6.85, higher than circulatory system diseases, 5.63. Cerebrovascular disease and ischemic heart disease were the main causes of death in circulatory system diseases. And average years of life lost in cerebrovascular disease and ischemic heart disease were 5.85 and 5.62, higher than those in other circulatory system diseases. Lung cancer was the principal cause of death in neoplasms. Average year of life lost in liver cancer was 7.92, the highest in neoplasms. Conclusions For redeployed miners, YLL rates per 1000 individuals in cerebrovascular disease, ischemic heart disease and lung cancer were higher than those in other populations, especially in men. It is important to attach importance to the health of redeployed miners, take appropriate measures to reduce premature death and achieve the sustainable development goal. Our findings also contribute to a certain theoretical reference for other countries that face or will face the same problem

    Ubiquitin-specific protease 5 is required for the efficient repair of DNA doublestrand breaks. PLoS One. 2014; 9:e84899. [PubMed: 24454762

    No full text
    Abstract During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of cH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair

    Abstract 39: FANCA regulates MUS81-EME1 mediated DNA incision in a damage-dependent manner

    No full text
    Abstract MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand crosslinks (ICL). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, interstrand crosslink repair protein, FANCA, greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner. Citation Format: Anaid Benitez, Fenghua Yuan, Satoshi Nakajima, Leizhen Wei, Liangyue Qian, Richard Myers, Jennifer J. Hu, Li Lan, Yanbin Zhang. FANCA regulates MUS81-EME1 mediated DNA incision in a damage-dependent manner. [abstract]. In: Proceedings of the AACR Special Conference: Cancer Susceptibility and Cancer Susceptibility Syndromes; Jan 29-Feb 1, 2014; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(23 Suppl):Abstract nr 39. doi:10.1158/1538-7445.CANSUSC14-39</jats:p

    USP5 interacts with RAD18 and USP5 depends on RAD18 in DSB repair.

    No full text
    <p>A: Interaction between expressed proteins. We transiently expressed EGFP-tagged RAD18 in cells expressing FLAG-His-tagged USP5 and pulled down by the His-tag and pull downs were detected with anti-GFP antibody. <b>B</b>: Interaction between EGFP-tagged RAD18 and endogenous USP5. Cells were treated with or without Bleocin for 2 hr and then cells were extracted. Extracts were pulled down with anti-GFP antibody and detected by anti-USP5 antibody. <b>C</b>: Damage response of USP5-EGFP after laser micro-irradiation in RAD18-proficient or -deficient cells. EGFP-tagged USP5 and DsRed-tagged RAD18 WT or each mutant were co-expressed in RAD18-deficient cells, and the damage response after laser micro-irradiation was analyzed. Cells were irradiated with the laser light for 100 ms. <b>D</b>: HR frequencies in cells depleted of USP5 and/or RAD18. Results of western blot analysis after siRNA treatment are shown on the top. The GFP-positive cell fraction in cells depleted of USP5 and/or RAD18 was determined and compared with that in cells treated with siCont or siBRCA1 for determination of frequencies; error bars, ± SED. The <i>P</i>-value was calculated using Student's <i>t</i>-test.</p

    USP5 is necessary for cell survival after DNA damage.

    No full text
    <p>A: Knockdown of USP5 expression by siUSP5 treatment. <b>B</b>: Colony forming assay after treatment with Bleocin, hydroxyurea, or methyl-methanesulfonate, with or without siUSP5 treatment. Filled square indicates without siUSP5 treatment and filled circle indicates with siUSP5 treatment; error bars, ± SED. The <i>P</i>-value was calculated using Student's <i>t</i>-test.</p

    Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    No full text
    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition
    corecore