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Chromatin remodeler ARID1A is an emerging tumor suppressor in a broad spectrum of 

human cancers. Thus it is of paramount clinical importance to understand whether we can 

exploit ARID1A deficiency therapeutically. In this study we report the function of 

ARID1A in genome maintenance and its deficiency sensitizes cells to PARP inhibitors. 

ARID1A is recruited to DNA double strand breaks (DSBs) through its interaction with 

DNA damage responsive kinase ATR, where ARID1A promotes DSB resection and 

sustains DNA damage signaling. ARID1A deficiency leads to impaired DNA damage 

checkpoint, which sensitizes cells to PARP inhibitors. We propose that ARID1A 

functions as a regulator of DNA damage checkpoint machinery and PARP inhibitors may 

be beneficial for patients with ARID1A-mutant tumors.  

 

SIGNIFICANCE (120 words) 

ARID1A is identified as one the most frequent mutated genes in human cancers in the era 

of next-generation DNA sequencing. Our study provides mechanistic insights into the 

function of ARID1A in tumor suppression via preventing genomic instability, which 

represents a key step to functionalize cancer genomic data. More importantly, our data 

reveal that loss of ARID1A in certain tumor types may sensitize cancer cells to DSB-

inducing treatment such as PARP inhibitors. The data we present here now suggests that 

the clinical assessment of PARP inhibitors might be extended beyond those with BRCA 

mutations to a larger group of patients with ARID1A mutant tumors, which may loss 

DNA damage defense mechanism and exhibit therapeutic vulnerability to PARP 

inhibitors.  

HIGHLIGHTS (85 characters including space) 
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 Chromatin remodeler ARID1A interacts with ATR and is recruited to DSBs 

 ARID1A depletion impairs DSB checkpoint response  

 ARID1A promotes DSB end resection and DSB-induced DNA damage signaling 

 ARID1A deficiency sensitizes cancer cells to PARP inhibitors 

INTRODUCTION 

ARID1A (the AT-rich interactive domain 1A gene) is identified as one of the most 

frequently mutated genes in human cancers by multiple next-generation genomic 

sequencing studies (Wilson and Roberts, 2011; Wu and Roberts, 2013; Wu et al., 2014). 

The mutation rate of ARID1A ranges from 10% to 57% in a broad spectrum of cancers 

including ovarian clear cell carcinoma, uterine endometrioid carcinoma, gastric cancer, 

hepatocellular carcinoma, esophageal adenocarcinoma, breast cancer, pancreatic cancer, 

tranitional-cell carcinoma of bladder, renal cancer, waldenstrom macroglobulinemia, 

pediatric burkitt lymphoma and cholangiocarcinoma (Wilson and Roberts, 2011; Wu and 

Roberts, 2013; Wu et al., 2014).  Furthermore, immunohistochemistry analyses have 

showed frequent loss of ARID1A expression in these cancers (Wilson and Roberts, 2011; 

Wu and Roberts, 2013; Wu et al., 2014). Overall, the frequency and patterns of ARID1A 

mutations strongly indicates that it is an emerging tumor suppressor in human cancers 

across tumor lineage. However how ARID1A deficiency leads to cancer development 

and whether we can exploit ARID1A deficiency in human tumors therapeutically remain 

to be unanswered questions.  

 

ARID1A, also known as BAF250a, is a subunit of an evolutionarily conserved chromatin 

remodeling complex SWI/SNF (Wang et al., 2004a; Wang et al., 2004b). SWI/SNF 
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complex is evolutionarily conserved in all eukaryotes (Roberts and Orkin, 2004). It uses 

the energy of ATP hydrolysis to reposition, eject, or exchange nucleosomes, which 

modulate DNA accessibility to cellular processes involved in chromatin structure such as 

transcription, DNA replication and DNA repair (Imbalzano et al., 1994; Kwon et al., 

1994; Wang et al., 2007). SWI/SNF complex contains multiple subunits, where 

BRG1/BRM, SNF5, BAF155 and BAF170 function as core subunits with ATPase 

catalytic activity (Phelan et al., 1999). ARID1A, as well as its paralog ARID1B, 

functions as a variant subunit, which is thought to associate with SWI/SNF core subunits 

and provide target specificity (Roberts and Orkin, 2004; Wang et al., 2004a; Wang et al., 

2004b). From our proteomic analysis to identify interacting proteins with a DNA damage 

responsive kinase ataxia telangiectasia and Rad3-related (ATR), we surprisingly found 

that ARID1A is a previously unknown binding partner of ATR. Recent cancer genomic 

studies reveal that human cancers result in large part from the accumulation of multiple 

genetic alterations including mutations, deletions, translocations and amplifications 

(Vogelstein et al., 2013). Thus, our proteomic result raised an intriguing question whether 

ARID1A plays a role in maintaining genomic integrity through its interaction with ATR, 

which could be crucial for preventing initiation and development of a wide spectrum of 

human cancers.  

 

ATR is a member of the phosphoinositol 3-kinase-like kinase (PIKK) family. Along with 

kinase ataxia telangiectasia-mutated (ATM), ATR functions as a central regulator to 

control DNA damage-induced phosphorylation cascade (Ciccia and Elledge, 2010), 

which forms the most important DNA damage response (DDR) program to detect, signal 
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and repair damaged DNA, and to coordinate cell cycle checkpoint activation and cell 

death pathways such as apoptosis and senescence (Ciccia and Elledge, 2010; Harper and 

Elledge, 2007; Jackson and Bartek, 2009). In DDR, ATM and ATR-mediated signaling 

pathways have both interdependent and distinct roles. In general ATM and ATR respond 

to different types of DNA damage: ATM is activated by double-strand DNA breaks 

(DSBs), whereas ATR responses to single-strand DNA breaks (SSBs) (Zhou and Elledge, 

2000). However the ATM- and ATR-activating DNA lesions are inter-convertible. DSBs 

activate ATM but can also activate ATR as a consequence of DSB end resection, which 

generates single-stranded region (Adams et al., 2006; Jazayeri et al., 2006; Myers and 

Cortez, 2006). Whereas SSBs activate ATR due to stalled replication forks, which can be 

cleaved by nucleases and cause DSBs formation (Schlacher et al., 2011). Once activated 

by DNA lesions, ATM and ATR phosphorylate a variety of common substrates. The 

overlapping and redundancy of these substrates provide an extensive crosstalk between 

ATM and ATR pathways, which allow them to function in a collaborative manner to 

maintain genomic stability (Matsuoka et al., 2007).  However, unlike ATM, ATR is 

essential for cell survival (Brown and Baltimore, 2000), supporting the functional 

importance of ATR for multiple genome maintenance programs including checkpoint 

activation, DNA repair and DNA replication at various stages of cell cycle progression. 

For example, in S phase, ATR regulates replication initiation, replisome stability, 

replication fork restart (Cimprich and Cortez, 2008). In G2 phase, ATR prevents 

premature mitotic entry in the presence of damaged DNA via the G2 checkpoint (Brown, 

2003; Cortez et al., 2001).  However, it remains to be a key question: how ATR signaling 

is regulated for its versatile roles in DDR? One possible mechanism is that ATR 
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interacting proteins provide fine-tuned regulatory elements in determining temporal and 

special functions of ATR in DDR. Therefore we conducted a proteomic analysis to 

systematically identify ATR interacting proteins.  Among many known ATR binding 

proteins such as ATRIP, we identified ARID1A as a new interacting partner of ATR.  

 

In this study, we found ARID1A is recruited to DSBs via its interaction with ATR. In 

response to DNA damage, ARID1A is required for processing DNA DSB ends to 

generate RPA-coated single strand DNA (ssDNA), a key step for ATR activation in 

response to DSBs potentially through altering chromatin environment at DNA breaks and 

allowing for DSB end resection. Consequently, loss of ARID1A leads to impaired 

checkpoint activation and DNA repair of DNA DSBs, which sensitizes cells to DSBs-

inducing DNA damage such as radiation and poly(ADP-ribose) polymerase (PARP) 

inhibitors. Thus, our results provide biological insights into the function ARID1A as a 

tumor suppressor in human cancers and a mechanistic basis for targeting ARID1A-

deficient tumors. 

 

RESULTS 

ARID1A is Recruited to DNA Breaks via Its Interaction with ATR. 

In order to explore the regulatory mechanisms for the functions of ATR in DDR, we 

conducted immunoprecipitation (IP) assay to purify ATR-associated protein complexes 

and then subjected to silver staining and mass spectrometry analysis (Figure 1A). Among 

many known ATR binding proteins such as ATRIP, we found ARID1A as a new binding 

partner of ATR (Figures 1A and S1). To confirm the result from proteomic study, we 
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performed reciprocal IP with V5-tagged ARID1A (Figure 1B) and endogenous IP 

analyses (Figure 1C), showing that ARID1A is indeed an ATR interacting protein. Given 

the important role of ATR in DNA damage response, next we tested whether ARID1A is 

recruited to DNA breaks. Current available ARID1A antibodies could not detect the 

ionizing induced foci formation (IRIF) of ARID1A at DNA breaks. Thus we used 

chromatin immunoprecipitation (ChIP) assay to examine whether ARID1A is recruited to 

the proximity of a single site-specific I-SceI-induced DSB (Figure 1D) as previously 

described (Peng et al., 2009; Pierce et al., 1999). Interestingly, we found that ARID1A 

was enriched at the chromatin region close to DSB induced by I-SceI. To facilitate the 

visualization of the recruitment of ARID1A to the DNA lesions, we used a light 

activation system (Killer Red System) to further confirm the localization of ARID1A at 

DSBs upon laser activation (Carpentier et al., 2009; Lan et al., 2010; Pletnev et al., 2009).  

As shown in Figures 1E and S2, EGFP-tagged ARID1A predominantly localized in the 

nucleus. Upon laser activation, ARID1A showed a specific enrichment at the DNA 

damage site, which was co-localized with Killer Red signals. These findings reveal that 

ARID1A interacts with ATR and is recruited to DSBs. We then set out to determine 

whether the recruitment of ARID1A to DSBs is dependent on its interaction with ATR.  

 

First, we transiently knockdown ATR and examined the recruitment of ARID1A to DSB 

via I-SceI-based ChIP analysis.  As shown in Figure 2A, in ATR knockdown cells, the 

recruitment of ARID1A to DSBs was significantly reduced. This result suggested that 

ATR is required for recruiting ARID1A to DNA lesions. Second we examined whether 

DNA damage signaling induced by DDR kinases ATM and ATR is required for the 
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recruitment of ARID1A to DSBs. We treated cells with chemical inhibitors of ATM or 

ATR. The effectiveness of these inhibitors on blocking DNA damage signaling was 

shown in Figure 2B by using their downstream phosphorylation targets. In this 

experiment, we found that ATM inhibitor could remarkably decrease the recruitment of 

ARID1A to DSBs (Figure 2B). However ATR inhibitor has less impact on regulating its 

recruitment compared to ATM inhibitor, although ATR knockdown significantly reduced 

the recruitment of ARID1A to DSBs (Figures 2A and 2C). Consistent with previous 

findings that ATR recruitment to DSBs requires ATM (Adams et al., 2006; Jazayeri et 

al., 2006; Myers and Cortez, 2006),  these data suggest that the interaction between 

ARID1A and ATR and proper DNA damage signaling initiated by ATM are required for 

ARID1A recruitment.  

 

To gain molecular details in ARID1A-ATR interaction and the recruitment of ARID1A 

to DSBs, we first used two deletion constructs to test whether ARID1A binds to ATR 

through its N-terminal half or its C-terminal half. As shown in Figure 2C, C-terminal 

ARID1A had a strong binding affinity to ATR, whereas N-terminal ARID1A could not 

pulldown ATR although N-terminal ARID1A had a comparable expression level as full-

length protein did. This result suggested that the domains required for ATR interaction 

are located in the C-terminal half of ARID1A. Then, we generated deletion mutants of 

the C-terminal half of ARID1A to further pinpoint the regions mediating its interaction 

with ATR. By using these constructs, we found that regions from 1800-1900 aa and 

2100-2200 aa at the C-terminal half of ARID1A were essential for its interaction with 

ATR (Figures 2D and 2F).  
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ARID1A is frequently mutated in human cancers. As expect for inactivating mutation for 

a tumor suppressor gene, the mutations were found to distribute throughout the gene and 

included nonsense and missense changes, out-of-frame and in-frame small insertions and 

deletions.  To determine the pathological significance of patient-derived mutations, we 

searched for ARID1A mutations in its ATR-interacting domain and we found that 

c5548delG is a mutation hotspot, which is commonly identified in multiple cancers 

including colon cancer, gastric cancer and pancreatic cancer (Jones et al., 2012). Thus, 

we tested whether this mutation abolished ARID1A-ATR interaction. As shown in 

Figures 2E and 2F, ARID1A (5548delG) mutated C-terminal half ARID1A failed to bind 

to ATR. In contrast, another patient-derived mutant ARID1A (5715delA), which was not 

localized to ARID1A-ATR interacting regions, could interact with ATR at the same 

expression level as ARID1A (5548delG). To confirm that the ARID1A-ATR interaction 

is required for its recruitment to DSBs, we determined the binding capability of the full-

length V5-tagged ARID1A (5548delG) mutant to I-SceI-induced DSBs. We found that 

indeed mutant ARID1A lack of ATR interacting capacity could not be recruited to the 

proximal regions of DSBs as efficiently as wild-type ARID1A (Figure 2G). Moreover, 

we examined the recruitment of EGFP-tagged wild-type and mutant ARID1A to DNA 

lesions by using Killer-Red mediated light activation system. As expected, mutant 

ARID1A reduced binding efficiency to damaged DNA (Figure 2H).  

 

Collectively, these data show that ARID1A interacts with ATR via its C-terminal region, 

which mediates its recruitment to DSBs. A frequent mutation c.5548delG identified from 
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cancer patients is located in ARID1A-ATR interacting domain, which impairs the 

recruitment of ARID1A to DSBs. Next we asked whether ARID1A deficiency impairs 

cellular response to DNA damage. 

 

ARID1A Is Required for Proper G2/M DNA Damage Checkpoint 

We used isogenic HCT116 cell lines with wild-type ARID1A and a knock-in mutant 

ARID1A (Q456*/Q456*), which abolishes ARID1A expression due to an early stop 

codon, as our model system. We first examined the cell cycle distribution at different 

time points after IR. As shown in Figure 3A, one hour after IR, control cells started to 

accumulate at G2/M checkpoint, which led to a significant increase of cells at G2/M 

phase at 4 hrs and 8 hrs after IR, suggesting ARID1A-depleted cells showed a weaken 

G2/M checkpoint activation (Figure 3). Sixteen hours after IR, while control cells still 

maintained a large proportion of cells arrested at G2/M checkpoint, ARID1A-depleted 

cells exhibited a markedly reduced percentage of cells at G2/M checkpoint with a 

significant increase of cells in G1 phase (Figure 3A). These results indicate that ARID1A 

deficiency leads to an impaired G2/M checkpoint initiation and maintenance. To confirm 

these results, we used phospho-Histone H3 staining to measure the fraction of mitotic 

cells after IR in ARID1A-depleted cells. Without IR treatment, there was no apparent 

difference in the percentage of mitotic cells after ARID1A depletion (Figure 3B). After 

exposure to IR, the percentage of mitotic positive cells was significantly reduced and 

started to recover 16 h after IR (Figure 3B). In contrast, ARID1A-deficient cells showed 

a slower decrease of mitotic cells in early time points after IR and a significant increased 

number of cells re-entrying into mitosis at 16h after IR, suggesting a defective G2/M 
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checkpoint initiation and maintenance (Figure 3B). In accord with this, as shown in 

Figure 3C, ARID1A depletion led to a remarkable increase in cumulative mitotic reentry 

after IR exposure as measured by paclitaxel treatment, which blocks the mitotic exit. 

Defective G2/M checkpoint maintenance was not due to the differential response to 

paclitaxel, since we observed a comparable block in mitotic accumulation when analyzed 

without IR (Figure 3C). Effective depletion of ARID1A expression in ARID1A null cells 

was shown in Figure 3D. These data therefore indicated that ARID1A deficiency 

significantly impairs G2/M checkpoint initiation and maintenance. As ARID1A is a 

subunit of SWI/SNF complex, we then asked whether the chromatin remodeling activity 

of SWI/SNF complex is required for G2/M checkpoint response. We knockdown the core 

catalytic subunit BRG1 or BRM in U2OS cells (Figure S3) and found that BRG1 

deficiency led to a similar increase of mitotic cells 16 h after IR compared to ARID1A 

knockdown cells (Figure 3E). This result suggested that ARID1A associated BRG1-

SWI/SNF complex is required for maintaining G2/M cell cycle arrest after DSBs.   

 

ARID1A Deficiency Impairs ATR Activation-Induced by DSBs 

Having observed a defective DNA damage checkpoint in ARID1A-deficient cells, we 

further examined whether ARID1A deficiency impairs DNA damage checkpoint 

signaling pathway. We treated cells with IR and examined the activation of CHK1, a key 

G2/M checkpoint regulator. In ARID1A-depleted cells, we found reduced CHK1 (S317) 

phosphorylation in response to IR particularly at late time point (8hrs after IR) (Figure 

4A). In response to DSBs, CHK1 (S317) is a specific phosphorylation target site for 

ATM and ATR. Thus we examined whether ARID1A deficiency affects ATM and/or 
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ATR activation. In response to damaged DNA, ATM (S1981) and ATR (T1989) become 

autophosphorylated, which are recognized as markers for the activation of their kinase 

activity (Jazayeri et al., 2006; Kozlov et al., 2006; Liu et al., 2011; Nam et al., 2011). 

Therefore, we examined ATM and ATR autophosphoryaltion in response to IR in 

ARID1A-depleted cells. As shown in Figure 4B, ARID1A deficiency remarkably 

reduced ATR activation in response to IR. However its depletion did not have any 

significant effect on regulating ATM activation and the recruitment of ATM to DNA 

damage sites (Figures 4C and S4). Previous findings have shown that the G2/M 

checkpoint is impaired in the absence of ATR (Brown and Baltimore, 2000). Thus, our 

data suggest that ARID1A depletion may impair ATR activation in response to DSBs and 

thereby affect checkpoint signaling (Figure 3).  

 

In general, DSB ends are the preferred substrate for ATM binding, which activates ATM 

first and then ATR is activated to sustain ATM-initiated signaling (Harper and Elledge, 

2007). Therefore, we examined the effect of ARID1A deficiency on the dynamic of 

H2AX phosphorylation, which is directly targeted by both ATM and ATR. As we 

expected, chromatin binding of Ȗ-H2AX was significantly reduced at 8 hrs compared to 4 

hrs after IR, indicating the impairment of sustained Ȗ-H2AX formation (Figure 4D). To 

confirm this result, we tested whether ARID1A deficiency reduces Ȗ-H2AX foci 

formation, which directly reflects the accumulation of Ȗ-H2AX at DSBs. As shown in 

Figure 4E, Ȗ-H2AX foci formation was significantly reduced at later time points after IR. 

In addition, we examined the foci formation of DNA damage responsive protein 53BP1. 

53BP1 is a key adaptor protein in checkpoint response, whose recruitment to DSBs is 
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dependent on the protein platform assembled by Ȗ-H2AX formation (Panier and Boulton, 

2014).  Consistent with the reduced Ȗ-H2AX foci formation at 8 hrs after IR, 53BP1 foci 

formation was remarkably reduced (Figure 4F). As shown in Figure S5, we used comet 

assay to determine the presence of DSBs. ARID1A-depleted cells had a comparable level 

of DSB formation after IR, suggesting that reduced Ȗ-H2AX and 53BP1 foci formation 

was not due to the reduced level of DSBs.  Collectively, these results indicate that 

ARID1A deficiency impairs ATR-mediated signaling in response to DSBs, which is 

required for sustaining DSB-induced DNA damage signaling. 

 

ARID1A Deficiency Impairs DSB End Resection for Initiating DSB-induced ATR 

Signaling 

Next we sought out to determine the molecular mechanism underlying the defective ATR 

activation induced by DSB in ARID1A-deficient cells. In response to DSBs, ATM is 

directly activated by the MRN (MRE11-RAD50-NBS1) complex, which is required to 

recruit ATM to DSBs (Berkovich et al., 2007; Falck et al., 2005; Lee and Paull, 2005), 

whereas the recruitment and activation of ATR to DSBs require the formation of RPA-

coated SSBs, which arises from 5’-γ’ resection of DSB end (Cortez et al., 2001; Zou and 

Elledge, 2003). Therefore, we ask whether ARID1A depletion affects the process of DSB 

end resection, which leads to reduced efficiency of ATR activation. First, we examined 

phosphorylation of  ssDNA-binding protein RPA in ARID1A depleted cells, as an 

indicator of DSB resection efficiency (Polo et al., 2012). As shown by western blot 

analysis (Figure 5A), IR-induced phosphorylation of the RPA2 subunit (Ser-4 and Ser-8) 

was significantly reduced after ARID1A depletion. In contrast, ARID1A deficiency did 
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not affect RPA phosphorylation in response to replication stress stimuli HU and UV 

treatment, although both HU and UV  can induce much stronger RPA phosphorylation 

than IR did (Figure 5B). This result suggested that ARID1A specifically affect DSBs-

induced formation of ssDNA. To confirm this observation, we used immunofluorescent 

staining to detect this phosphorylation event at DNA damage sites. Notably, ARID1A 

depletion markedly reduced formation of p-RPA (Ser4/Ser8) foci formation, which 

indicated RPA accumulation and the impaired the ssDNA formation at DSBs (Figure 

5C).  Furthermore, we tested the effect of ARID1A loss on the chromatin environment 

around DSBs. We examined the histone H3 occupancy at I-SceI-induced DSB site by 

ChIP assay. We found that H3 deposition was not altered in ARID1A-depleted cells 

before DNA damage (Figure 5D). However, H3 occupancy was much higher in 

ARID1A-depleted cells after I-SceI-induced DSBs. These data support an impaired DSB 

end resection due to loss of ARID1A, suggesting that ARID1A is required to create a 

favorable chromatin environment for efficient DSB end resection. Moreover we 

determined whether ARID1A depletion affects DSB repair via homologous 

recombination (HR) and single strand annealing (SSA), which represent the repair 

mechanisms required DSB end resection (Figure S6). In line with our findings that 

ARID1A is required for efficient DSB end resection, we found that ARID1A knockout 

indeed  impaired HR repair and SSA repair efficiency (Figures 5E and 5F). In addition, to 

exclude the potential impact of ARID1A depletion on gene transcription regulation, we 

examined the key molecules involved in DDR and DSB resection in ARID1A-depleted 

cells, we did not observe any apparent reduced protein expression levels (Figure S7).  

Together these data suggest that initial DSB end resection resulted from ATM-MRN 
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complex-dependent signaling recruits ATR, which in turn recruits ARID1A to promote 

DSB end resection and ATR activation and thereby augment DSB-induced DNA damage 

signaling.  

 

ARID1A Deficiency Sensitizes Cells to DNA Damage-Inducing Agent PARP 

Inhibitors 

Poly(ADP-ribose) polymerase inhibitors are recently developed anti-cancer drugs 

targeting a key enzyme PARP1 involved in repairing DNA SSBs (Bryant et al., 2005; 

Farmer et al., 2005). PARP inhibitor treatment causes failure of SSB repair, which can be 

converted into DSBs when DNA replication forks stall and collapse at the persistent SSB 

lesions (Bryant et al., 2005; Farmer et al., 2005).  Therefore, PARP inhibitors are highly 

selectively lethal to cells lacking BRCA1 or BRCA2, two genes in repairing DSBs, while 

they exhibit minimal toxicity to normal cells and less therapeutic effects in cancer cells 

without DSB repair deficiency(Bryant et al., 2005; Farmer et al., 2005).  We found that 

ARID1A-depleted cells exhibit a significant G2/M checkpoint defect in response to 

DSBs, which may lead to an insufficient cell cycle arrest for DSB repair. In addition, 

ARID1A deficiency impaired DSB repair process through both HR and SSA 

mechanisms. Based on these observations, we reasoned that ARID1A deficiency may 

provide a therapeutic vulnerability to DSBs induced by PARP inhibitors. Therefore, we 

tested this hypothesis in a variety of isogenic models with multiple PARP inhibitors, 

which are currently used in clinical trials. First, we knockdown ARID1A in two 

immortalized normal breast epithelial cell lines MCF10A and HMEC and then we treated 

cells with different PARP inhibitors Olaparib, Rucaparib and Veliparib. As shown in 
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Figures 6A and 6B, PARP inhibitors selectively inhibited the survival of cell lacking 

ARID1A expression. In the next experiment, we tested whether ARID1A depletion 

sensitizes cancer cells to PARP inhibitor treatment in colon cancer cell line HCT116 and 

breast cancer cell line MDA-MB-231. We treated cancer cells with Olaparib and 

BMN673, a potent PARP inhibitors reported from most recent studies. As expected, 

ARID1A knockdown cells showed a remarkably reduced number of colony formation in 

the presence of PARP inhibitors (Figure 6C). It is worthy of noting that in addition to the 

reduced number of colony, BMN673 treatment also reduced the average of size of colony 

formation compared to Olaparib treatment, suggesting its strong anti-cancer cell survival 

effect. In line with these findings, ARID1A-depleted cells showed significantly enhanced 

apoptosis after exposure to PARP inhibitors in MDA-MB-231cell line (Figures 6D, 6E) 

and in HCT116 cell line (Figure F). To further confirm the function of ARID1A in DNA 

damage response is responsible for sensitizing ARID1A-deficient cells to PARP 

inhibitors, we reconstituted ARID1A knockout-HCT116 cells with wildtype or mutant 

ARID1A (c.5548delG), which cannot be recruited to the DSB sites. As shown in Figure 

6G, mutant ARID1A was not able to rescue enhanced PARP inhibitor-induced apoptosis 

in ARID1A-depleted cells. In contrast, expression of wild-type ARID1A significantly 

reduced apoptosis after PARP inhibitor treatment, although the rescue was partial, which 

was likely due to the transient reconstitution of ARID1A wildtype construct in these 

cells. This result suggested that indeed the recruitment of ARID1A to DSBs is essential 

for its function in regulating DDR.  
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Compared to Olaparib and Veliparib,  Rucaparib and BMN673 showed stronger effects 

on inhibiting cell survival and inducing apoptosis in ARID1A-deficient cells. Thus we 

examined whether Rucaparib and BMN673 exhibit a dose-dependent induction of 

apoptosis in ARID1A-depleted cells. As shown in Figure 6H, both drugs could induce a 

stronger apoptotic effect in ARID1A-depleted cells in a dose-dependent manner 

compared to control cells. Consistent with previous findings indicating BMN673 as a 

potent PARP inhibitor (Cardnell et al., 2013; Shen et al., 2013), it significantly induced 

apoptosis in ARID1A-deficient cells at much lower concentrations than Rucaparib. 

Therefore, in the next step, we tested the selective antitumor effects of BMN673 against 

ARID1A-deficient cancer cells in vivo. 

 

PARP Inhibitor BMN673 Oral Administration Selectively Inhibits ARID1A-

Deficient Tumors in Xenograft Models 

We xenografted ARID1A-deficient breast cancer cells MDA-MB-231 and ARID1A-

depleted colon cancer cells HCT116 into nude mice and treated animals with BMN673. 

Oral administration of BMN673 (once a day dose of 0.33 mg/kg) significantly inhibited 

the growth of ARID1A-deficient xenografts in mice (Figures 7A, 7B and 7D), whereas it 

had no apparent antitumor effect on ARID1A-wildtype xenografts (Figures 7A, 7C and 

7E). HCT116 cells grew xenograft tumors much faster than MDA-MB-231 cells. Due to 

the significant tumor burden in the untreated group, HCT116 xenograft mice were treated 

with BMN673 for 16 days. After 1 week treatment, BMN673 started to show a 

remarkable selective antitumor efficacy in ARID1A-depleted HCT116 cells and this 

antitumor effect became more significantly after 16-day treatment (Figure 7B). MDA-
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MB-231 xenografts were treated with BMN673 for 30 days, where BMN673 

significantly inhibited tumor growth in ARID1A-deficient cancer cells (Figure 7D). In 

both xenograft models, at the end of scheduled treatment, growth from ARID1A-

deficient xenografts was suppressed by BMN673 when compared to vehicle-treated 

xenografts (Figure 7F). Conversely BMN673 did not have a similar effect on the growth 

of ARID1A wild type xenografts (Figure 7F). Furthermore, we analyzed the expression 

of apoptosis marker cleaved caspase 3 and DNA damage response marker 

phosphorylated CHK1 in xenograft tumor tissues. As expected, ARID1A-deficient cancer 

cells failed to response BMN673-induced DNA damage appropriately with a much lower 

expression level of p-CHK1 than control cells with wild type ARID1A (Figure 7G). In 

accord with this observation, ARID1A-deficient tumor cells has an enhanced apoptosis 

induced by BMN673 treatment (Figure 7G).  In summary, our study provides data to 

suggest that targeting the defective DNA damage response could be beneficial for cancer 

patients with ARID1A-deficient tumors. PARP inhibitors may be a useful drug to treat 

these patients.  

 

DISCUSSION 

Our study indicates that ARID1A interacts with ATR and is recruited to sites of DNA 

damage in an ATR-dependent manner and thereby promotes effective DNA DSB end 

resection, a process required for promoting ATR-dependent signaling from DSB sites and 

repair of DSBs through homologous recombination pathways. In light of these findings, 

our in vitro and in vivo data further show that PARP inhibitors can selectively target 

ARID1A-deficent cells. Collectively our results provide mechanistic insights into how 
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ARID1A suppresses tumorigenesis and how we might exploit ARID1A deficiency 

therapeutically. 

 

ARID1A was identified as one the most frequent mutated genes in human cancers from 

genome-wide DNA sequencing studies (Wu and Roberts, 2013; Wu et al., 2014). Later 

functional studies showed that restoration of ARID1A expression in a variety of cancer 

models can repress cancer cell proliferation and xenograft tumor growth, suggesting 

ARID1A functions as a tumor suppressor (Wu and Roberts, 2013; Wu et al., 2014). 

Multiple studies have pointed tumor suppressor roles for ARID11A in regulating a 

transcriptional program of a proper cell cycle progression. In an ovarian cell line model, 

ARID1A-associated SWI/SNF complexes is found to be recruited to p21 promoter 

through interaction with p53 (Guan et al., 2011). In a pre-osteoblast cell line model, 

ARID1A is required for differentiation-associated cell cycle arrest through repressing 

E2F-responsive promoters and c-myc promoter, which leads to p21 induction(Nagl et al., 

2005) . Using Drosophila neuroblasts, SWI/SNF component Osa (ARID1) prevents 

tumorigenesis by inducing a transcriptional program that initiates temporal patterning, 

limits self-renewal and prevents dedifferentiation (Eroglu et al., 2014). Interestingly, our 

study report a new role of ARID1A-associated SWI/SNF complexes in preventing 

genomic instability. Specifically in response to DSBs, ARID1A is required for 

overcoming chromatin barrier for DSB end resection, which allows for generating RPA-

coated ssDNA and efficiently activating ATR signaling to arrest cell cycle at G2/M 

checkpoint.  Thus, our results indicate that ARID1A, in addition to its role as a 

transcription ‘gatekeeper’ in regulating normal cell cycle transition, in the stress 
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condition with the presence of DSBs, it can also function as a ‘caretaker’ to maintain 

genomic integrity. Consistent with this ‘caretaker’ role of ARID1A identified in our 

study, previous studies also found that knockdown SWI/SNF core component BRG1 or 

BRM can affect DNA repair pathways and DNA damage response (Wilson and Roberts, 

2011). Notably,  in the absence of DNA damage stress, ATPase activity of BRG1, the 

core subunit of SWI/SNF complex is found to be required for localization of 

topoisomerase II alpha (TOP2A) to genome and thus plays a role in decatenating  newly 

replicated sister chromatids and maintaining proper chromaosome segregation in mitosis 

(Dykhuizen et al., 2013). These findings together with our study support that tumor 

suppressor ARID1A is an emerging epigenetic regulator of genome stability, which may 

explain why ARID1A mutations are frequently observed in multiple lineages of human 

cancers.  

 

As a new regulator of ATR signaling , our results show that ARID1A is recruited to 

DSBs via its interaction with ATR and this recruitment in turn is required for promoting 

efficient ATR activation. It is well-known that ATR is activated by RPA-coated ssDNA 

(Zou and Elledge, 2003). Moreover, RPA-ssDNA is not only a quantitative signal for 

ATR-ATRIP recruitment but also a length-dependent platform that promotes ATR 

activation (Cimprich and Cortez, 2008; Liu et al., 2011).  Thus, in response to DSBs, 

DNA end resection to generate ssDNA becomes a key regulatory step for efficient ATR 

activation. Recent studies have characterized a two-stage model of DSB end resection. In 

this model, initial limited resection is mediated by MRE11-RAD50-NBS1 (MRN) sensor 

complex and CtBP-interacting protein (CtIP) (Clerici et al., 2005; Gravel et al., 2008; 
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Limbo et al., 2007; Sartori et al., 2007) , which subsequently leads to longer-range 

resection involving EXO1, BLM and DNA2 (Budd and Campbell, 2009; Mimitou and 

Symington, 2008; Nimonkar et al., 2011). However little is known how the switch from 

initial to long resection is controlled, which contributes to initial ATR recruitment to 

persistent ATR activation at DSBs. Our results suggest that ARID1A may function as an 

epigenetic switch to coordinate this two-stage resection process. In response to DSBs, 

MRN and CtIP may generate initial ssDNA for recruiting ATR. Thereby ARID1A is 

recruited to DSBs via its interaction with ATR and thus promotes a favorable chromatin 

environment for long resection, which further promotes ATR activation and ATR-

dependent signaling in response to DSB. It is worthy of noting that we observed 

predominant defect in G2/M checkpoint, however we only found mild defects in HR 

repair and SSA repair, which are also dependent on DSB end resection. There are two 

possibilities to explain this phenomenon. First, additional factors may participate in 

resection during DSB repair process. Previous studies have shown that SWI/SNF 

component SMARCAD1 is a nucleosome remodeling enzyme required for resection of 

DSB end during DNA repair (Chen et al., 2012; Costelloe et al., 2012). It is possible that 

a different sub-complex of SWI/SNF may contribute to DSB repair, which alleviates the 

defective resection in the absence of ARID1A during the repairing process. Second, in 

our study we observed the reduced levels of 53BP1 foci at the late time point of 

checkpoint activation (8hrs after IR). 53BP1 is a mediator of DSB signaling, which 

provides a molecular scaffold to recruit DSB-responsive proteins and is required for 

G2/M checkpoint (Panier and Boulton, 2014). In addition, 53BP1 is also required to 

protect DSBs from end resection (Panier and Boulton, 2014). The impaired 53BP1 
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accumulation at DSBs in ARID1A-depleted cells may relieve the block for resection at 

late time point after IR and led a mild defect in repair compared to checkpoint defect. In 

summary our study shows that tumor suppressor ARID1A appears to be an epigenetic 

component of checkpoint machinery through regulating ssDNA generation at the DSB 

end, which ensures a proper checkpoint response by controlling the ATR activation.  

 

In addition to providing biological insights into the function of ARID1A in genome 

maintenance, our study further show that PARP inhibitors can selectively inhibit 

ARID1A-deficient cells both in vitro and in vivo models we tested. As target therapeutic 

drugs, monotherapy of PARP inhibitors is found well-tolerant in patients, however with 

minimal therapeutic effects without specific genetic defects such as BRCA1/BRCA2 

mutations (Ellisen, 2011).  Thus, our study provides a mechanistic rationale for testing 

the efficacy of PARP inhibitors in ARID1A-deficient tumors. It is worthy of noting that 

we found that ARID1A mutation 5715delA can interact with ATR whereas mutation 

5548delG cannot bind to ATR. This result suggests that not all ARID1A mutations will 

result in defective DNA damage response. Therefore it is imperative to treat ARID1A-

mutant tumor based on the biological significance of its mutation. 

 

Moreover, specific inactivating mutations in several other SWI/SNF subunits have also 

been frequently found in various human cancers including PBRM1, ARID2, ARID1B, 

BRG1, SNF5 and BRD7 (Wilson and Roberts, 2011). However mutations in different 

SWI/SNF subunits lead to distinct cancer spectrum (Wilson and Roberts, 2011). For 

example, SNF5 mutations are found in nearly all malignant rhabdoid tumors (Roberts and 
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Biegel, 2009), while PBRM1 mutations are identified in 40% of renal cancers (Varela et 

al., 2011). Consistent with these observations, genetic knockout mouse model with 

individual SWI/SNF subunit exhibits distinct phenotypes (Roberts and Orkin, 2004; 

Wilson and Roberts, 2011). These findings support that individual subunits may have 

distinct tumor suppressor roles in specific tissue contexts. Given the diverse combination 

and interactions of subunits in a particular SWI/SNF complex, it is possible that ARID1A 

may have distinct effects on tumorigenesis in different tissues through both transcription-

dependent and –independent mechanisms. Recently ARID1A/B are found to contain 

putative E3 ubiquitin ligase activity. It is likely it may function as a regulator of 

ubiqutination process, which adds an additional complexity of ARID1A’s function (Li et 

al., 2010). Therefore, it might be expected that ARID1A may have distinct mechanisms 

for tumor suppression in a tissue-dependent manner. It is of interests to investigate to 

what extent ARID1A deficiency leads to defective checkpoint activation in different 

cancer tissues. The answer to this question will be instrumental to guide therapy with 

DNA damage inducing agent such as PARP inhibitors.  It has been found that ARID1A 

mutations cooperate with activation of PI3K/AKT pathway in promoting tumorigenesis 

(Wu and Roberts, 2013; Wu et al., 2014). A most recent study showed that depletion of 

ARID1B reduces survival of ARID1A mutant cancer cells (Helming et al., 2014). Thus it 

is possible to explore mechanism-based combination treatment by using PARP inhibitors 

with PI3K/ATK inhibitors or strategies targeting ARID1B, which may provide new 

therapeutic avenues for patients with ARID1A mutated tumors.  

 

EXPERIMENTAL PROCEDURES 
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Cell Culture and Plasmids 

HCT116 parental and ARID1A knockout (Q456*/Q456*) cell lines were purchased from 

Horizon Discovery Ltd and were maintained according to the manufacturer’s instruction. 

U2OS cells and breast cancer cell lines were purchased from the American Type Culture 

Collection. U2OS cells were maintained in McCoy's 5A medium (Cellgro) supplemented 

with 10% FBS with glutamine, penicillin, and streptomycin. MDA-MB-231 breast cancer 

cells were grown in RPMI 1640 medium supplemented with 10% FBS. HMEC were 

grown in HuMEC medium with the addition of growth supplement. MCF10A cells were 

maintained in mammary epithelial growth medium (Clonetics), a proprietary serum-free 

medium containing insulin, hydrocortisone, epidermal growth factor, and bovine pituitary 

extract. Cells were incubated at γ7°C in a humidified incubator with 5% CO2. 

The pCDNA6-V5-ARID1A and its deletion form 1-1758aa and 1759-2285aa were kindly 

provided by Dr. Ie-Ming Shih, Johns Hopkins University School of Medicine. The 

EGFP-ARID1A and its mutant forms were generated from the company Custom DNA 

Constructs. Other mutations were generated by QuickChange II Site-Directed 

Mutagenesis Kit (Stratagene).  The identity of all plasmids was confirmed by sequencing 

at the M.D. Anderson Cancer Center DNA Core Sequencing Facility. 

 

Antibodies and Reagents 

Anti-ARID1A (1:500) and anti-RPA (1:1,000) antibody was purchased from Bethyl 

Laboratories. Anti-V5 (1:1,000) antibody was purchase from Life Science Technology. 

Anti- -53BP1 (1:2,000) 
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antibody was purchased from Novus Biologicals. Anti-ATR (1:500) antibody was 

purchase from Santa Cruz Biotechnology. Apoptosis detection kit was purchased from 

BD Biosciences. Anti-ATRIP (1:1,000), p-ATM (1:500), p-Chk1 (1:500), p-Chk2 

(1:500), p-H3 (1:500) antibodies were purchased from Cell Signaling Technology. Anti-

Tubulin and anti-ȕ-actin were purchased from Sigma. The PARP inhibitors Olaparib, 

Veliparib, Rucaparib and BNM673 were purchase from Selleckchem. The silver staining 

kit was purchased from Thermo Scientific.  

 

KillerRed system 

KillerRed (KR) is a light-stimulated ROS-inducer fused to a tet-repressor (tetR-KR), 

which binds to a TRE cassette (~ 90 kb) integrated at a defined genomic locus in U2OS 

cells (U2OS TRE cell line) (40). KR facilitates the formation of oxygen radicals and 

superoxide through the excited chromophore (41, 42) to induce DNA damage. By 

targeting the expression of KR to one specific genome site, we can visualize the 

recruitment of proteins at genetic loci. To activate KR, tetR-KR was exposed to 559 nm 

laser light for 50 scans (over a total of 10 s) at a power rate of 1 mW/scan (equal to 50 

mW). At “the KR-TRE array” induced localized damage, we have detected -H2AX at 

the site of tetR-KR but not tetR-monomer cherry (tetR-mcherry) after laser light exposure 

(unpublished data). For bleaching KR, a 559 nm laser (1 mW/scan) in a selected area was 

used (FV1000 SIM Scanner set with 405 nm laser diode, Cat. F10OSIM405, Olympus). 

The dose that was delivered to the KillerRed spot was calculated based on the pixel 

size, the pixel size for irradiation is (0.138 um/pixel) and the dwell time per pixel is (8 

us/pixel). The irradiation is at 1.0 mW (1.0 mJ/s). With a dwell time of 8 us/pixel, this 
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irradiates each pixel with 8.0 nJ/pixel/scan. Multiplying by the number of scans gives the 

total energy per pixel. 

 

Flow cytometric analyses 

 

Cell cycle profiles were measured by flow cytometry using propidium iodide (PI). 

Briefly, HCT116 or UβOS cells were plated at γ×105 cells/plate in 60 mm plates β4 hrs 

prior treatment. Cells were treated by ionizing radiation at various dosages. Taxol (2 M) 

was added into the medium 1 hr post radiation and were remained in the medium. At the 

end of the treatment, cells were trypsinized and collected by centrifugation (1,000 RPM 

for 5 min RT). Cell pellets were resuspended in PBS and fixed in 70% ethanol for 1 hr at 

4°C. After being washed twice with PBS, cells were incubated at RT γ0 min in dark with 

PI staining solution containing 50 g/ml PI (Calbiochem, La Jolla, CA), 20 g/ml RNase 

A (Novagen) and 0.05% Triton X-100. For p-H3 staining, the cell pellets were incubated 

with buffer (PBST + 0.1% NP40 + 0.1% Triton X-100) containing Anti-p-H3-Alex673 

antibody at 4°C overnight. The cells were washed twice with PBS and stained with PI 

staining solution. Stained cells were analyzed in Beckman Coulter Gallios flow 

cytometry using Kaluza Flow Analysis Software. 

 

RNA Interference 

ARID1A knockdown was achieved by RNA interference using a lentiviral vector-based 

MISSION shRNA or siRNA (Sigma). Lentiviral particles corresponding to the MISSION 

shRNA ARID1A- NM_006015 target set were used, as well as the MISSION nontarget 
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shRNA control. Specificity and efficacy of the shRNA ARID1A procedure were 

controlled by western blotting after transduction and puromycin selection in cells. siRNA 

transfection was conducted using oligofectamin (Life Science Technology) according to 

the manufacturer’s instructions. 

 

Immunoblotting, Immunoprecipitation and Chromatin fractionation 

Cells were washed in PBS, and cellular proteins were extracted in 8 M urea lysis buffer 

plus protease and phosphatase inhibitors (GenDEPOT) for γ0 min at 4°C. Lysates were 

cleared by centrifugation, and proteins were separated by gel electrophoresis. Membranes 

were blocked in PBS-0.1% Tween 20 (PBS-T)/5% (w/v) milk for 1 hr at room 

temperature. Membranes were then incubated with primary antibodies diluted in PBS-

T/5% (w/v) milk at 4°C overnight. Subsequently, membranes were washed with PBS-T 

and incubated with horseradish peroxidase secondary antibody (1:2,000) (Jackson 

ImmunoResearch) diluted in PBS-T/5% skim milk. Membranes were washed in PBS-T, 

and bound antibody was detected by enhanced chemiluminescence (ECL; GE 

Healthcare). Immunoprecipitation was performed by incubating lysates from 6 × 106 

cells with 1 g of antibody at 4°C overnight, followed by addition of β0 l of protein 

A/G-conjugated agarose beads (GE Healthcare). The precipitates were washed four times 

with ice-cold PBS, resuspended in 6× Laemmli buffer, and resolved by SDS-PAGE 

followed by immunoblotting. The preparation of chromatin fractions and western blot 

analyses, including the conditions for RPA analysis, were performed as described 

previously (5, 22). 
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HR and SSA repair assay 

The HR and SSA repair assay were performed as described previously (Bennardo et al., 

2008; Peng et al., 2009). 

 

Immunofluorescent staining for foci formation 

For detection of DNA damage induced foci of -H2AX, 53BP1 and p-RPA32, 

immunofluorescent staining was carried out essentially as described previously (ref).  

After treatment, cells were subjected to cytoskeleton extraction and stripping, then were 

fixed in PBS buffered 4% paraformaldehyde. Primary antibodies were incubated at 4°C 

overnight and secondary antibody Alexa 488-conjugated goat anti-rabbit IgG was 

incubated for 1 hr at RT. Slides were mounted in medium containing DAPI (Vector 

laboratories, Burlingame, CA) and analyzed under a fluorescence microscope. At least 50 

cells per sample were scored and the foci numbers were calculated.  

 

Chromatin immunoprecipitation (ChIP) assay. 

DSBs were induced in cells transfected with control siRNA or ATR siRNA by I-SceI 

expression. At indicated time points, cells were crosslinked with formaldehyde and ChIPs 

were performed with an EZ ChIP kit (Upstate) in accordance with the manufacturer's 

instructions. Cellular lysates were subjected to five sets of sonication on wet ice with a 60 

Sonic Dismembrator (Fisher Scientific). Each set consisted of 8 s of sonication separated 

by 1-min intervals on ice. ARID1A and V5 (5 l/reaction) antibodies were used for 

immunoprecipitation. The ChIP primers used to analyse proteins binding at the site of 
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DSBs were 5´-TACGGCAAGCTGACCCTGAA-γ´ (sense) and 5´-

GCCCATATATGGAGTTCCGC-γ´ (antisense). 

 

Comet Assay 

Comet assay was performed as previously described (Peng et al., 2009).  Briefly, the 

presence of DSBs was analyzed by neutral comet assay using the Trevigen’s Comet 

Assay kit according to the manufacturer’s instruction. Cells were exposed to 10 Gy IR 

and subjected to comet analysis at indicated time points. After staining with SYBR green, 

comet images were captured by fluorescence microscopy. Tail moments (percentage of 

DNA in tail x tail length) were quantitated for 100 cells/slide by using CometScore 

Software.  

  

Soft Agar Assay 

Cells were resuspended in DMEM containing 0.4% low-melting agarose (Sigma, type 

VII) and 10% FBS and seeded onto a coating of 0.8% low-melting agarose in DMEM 

containing 10% FBS. Colonies were scored three weeks after preparation. Colonies larger 

than 0.1 mm in diameter were scored as positive. 

 

Tumor Growth in Nude Mice 

Male athymic nu/nu mice (6–8-week old) were used for all in vivo xenograft studies. 

Mice were quarantined for at least 1 week before experiments. All animal studies were 

conducted in compliance with animal protocols approved by the M.D. Anderson Cancer 

Center Institutional Animal Care and Use Committee. Exponentially growing MDA-MB-
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231 (1x106) or HCT116 (2x106) cells were implanted subcutaneously at the flank of nude 

mice. Mice were treated with vehicle or BMN673 (0.33mg/kg) once daily by oral gavage. 

Tumors were measured every 2 days by calliper to determine tumor volume using the 

formula [length/2]X[width2]. Each cell line was tested in six different animals. 

For immunohistochemistry, tumor tissue samples were fixed in 4% buffered 

Paraformaldehyde and processed for histopathologic evaluation by paraffin embedding 

and antibody staining. 

 

Statistical analysis. 

All statistical analysis was performed with a two-tailed Student's t-test. 
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FIGURE LEGENDS 

Figure 1. ARID1A interacts with ATR and is recruited to DSBs.  

(A) Silver staining of the ATR complex separated by SDS-PAGE. The whole cell 

extracts were prepared from 293T cells. ATR interacting proteins ATRIP and ARID1A 

are indicated.  

(B) Co-IP of ARID1A with ATR analyzed by Western blotting from 293T cells 

transfected with empty vector V5-Control or V5-ARID1A. 

(C) Endogenous interaction between ARID1A and ATR analyzed by Western blotting 

from 293T cells.  
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(D) ARID1A is recruited to I-SceI-induced DSBs analyzed by CHIP assay. DRGFP 

construct containing a cutting site for I-SceI restriction enzyme were stably integrated 

into U2OS cells as described in Figure S4. Eight hours after I-SceI transfection, ChIP 

assay were performed. qPCR analyses were used to detect the relative enrichment of 

ARID1A to the IgG control (Average ± SEM; n=γ) 

 (E) ARID1A is localized at DNA damage sites. GFP-tagged ARID1A and tetR-mcherry 

or tetR-KR were transfected into U2OS TRE cells. The KillerRed spot was activated with 

559 nm laser to induce DNA damage. Representative images after DNA damage 

by KillerRed activation are shown. Yellow arrowheads: DNA damage sites induced by a 

tet-repressor fused KillerRed (tetR-KR) expression and light activation as described in 

Figure S2. 

 

Figure 2. The recruitment of ARID1A to DSBs is dependent on its interaction with 

ATR. 

(A) ATR is required for the recruitment of ARID1A to DSBs. DRGFP-U2OS cells were 

transfected with control siRNA or ATR siRNA (SMARTpool). Fourty-eight hours later, 

cells were transfected with I-SceI plasmid. CHIP assay was conducted 8 hrs after I-SceI 

transfection and qPCR analyses were used to detect the relative enrichment of ARID1A 

to the IgG control (Average ± SEM; n=γ) 

(B) The recruitment of ARID1A to DSBs is dependent on ATM/ATR signaling. DRGFP-

U2OS cells were pre-treated with ATR inhibitor (ATRi) VE-821 (), and ATM 

inhibitor (ATMi) KU55933 () for 30min, and incubated with the inhibitors for 

additional 8 hrs during I-SceI transfection. ChIP analyses were performed 8 hrs after 
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induction of DSB by I-SceI transfection. (Left) Phosphorylation of ATM/ATR substrates 

was detected by indicated antibodies.  (Right) qPCR analyses were used to detect the 

relative enrichment of ARID1A to the IgG control (Average ± SEM; n=γ) 

(C and D) C-terminal half of ARID1A binds to ATR. 293T cells were transfected with 

plasmids encoding full length V5-ARID1A (FL) or deletion constructs of V5-ARID1A. 

Cell lysates were immunoprecipitated using anti-ATR antibody.  

(E) Patient-derived mutant ARID1A (5548delG) was unable to bind ATR. 293T cells 

were transfected with plasmids encoding V5-ARID1A or patient-derived mutants V5-

ARID1A (5548delG) and (5715delA). Cell lysates were immunoprecipitated using anti-

ATR antibody.  

(F) Schematic diagram of ARID1A deletions and mutants. 

(G) ARID1A mutant (5548delG) had a reduced enrichment at I-SceI-induced DSBs. 

DRGFP U2OS cells were transfected with wildtype or mutant V5-ARID1A. Fourty-eight 

hours later, cells were transfected with I-SceI and 8 hrs later, ChIP assays were conducted 

with anti-V5 beads. qPCR analyses were used to detect the relative enrichment of 

ARID1A to the vector control (Average ± SEM; n=γ; Student’s t-test, *<0.01) 

(H) The recruitment of ARID1A mutant (5548delG) to DNA damage sites was impaired. 

(Left) Representative images after DNA damageby KillerRed activation are shown. 

(Right) Quantitative results represent the mean ± SD of three independent experiments. 

 

Figure 3. ARID1A deficiency impairs G2/M DNA damage checkpoint. 
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(A and B) Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to 

IR (10 Gy) and DNA content (A) and phosphor-Histone H3 (B) were determined at 

indicated time points post IR.  

(C) Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to IR (10 

Gy) or left untreated and subsequently grown in the presence of paclitaxel (). 

Phosphor-Histone H3 was determined at the indicated time points after IR.  

(D) Western blot analyses confirm the effective ARID1A depletion in HCT116 ARID1A 

knockout cells. 

(E) U2OS cells were stably knockdown ARID1A, BRG1 or BRM with shRNAs. 

Phosphor-Histone H3 was determined 16 hrs after IR in the presence of paclitaxel.  

(A-D) (Left) Representative images.  (Right) Quantitative results represent the mean ± 

SD of three independent experiments (Student’s t-test, *<0.05).  

 

Figure 4. ARID1A is required for DSB-induced ATR activation and checkpoint 

signaling. 

(A-C) Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to IR 

and harvested at indicated time points. Whole cell lysates were immunoblotted with the 

indicated antibodies. 

(D) Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to IR and 

harvested at indicated time points. Chromatin fractionation was immunoblotted with the 

indicated antibodies. 

(E-F) Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to IR 

and immunostained with indicated antibodies. (Left) Representative images, Scale bar, 
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10µM. (Right) Data are presented from 3 independent experiments (Student’s t-test, 

*<0.01).  

 

Figure 5. ARID1A promotes DSB end resection. 

(A and B) Western blot analysis of RPA phosphorylation (p-RPAS4/S8) at indicated 

time points after IR (A) or replication stress stimuli (HU 2mM and UV 50 J/m2) (B) in 

Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells. 

 (C) Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to IR 

and immunostained with p-RPAS4/S8. (Left) Representative images, Scale bar, 10µM. 

(Right) Data are presented from 3 independent experiments (*<0.01). 

 (D) DRGFP U2OS cells were transfected with control siRNA or ARID1A siRNA 

(SMARTpool). Fourty-eight hours later, cells were transfected with I-SceI plasmid. ChIP 

assay was conducted 8 hrs after I-SceI transfection and qPCR analyses were used to 

detect the relative enrichment of Hγ to the IgG control (Average ± SEM; n=3; Student’s 

t-test,* p<0.01). Western blot analyses to demonstrate the effectiveARID1A knockdown 

were shown next to the graph. 

 (E and F) Defective HR repair (E) and SSA repair (F) in ARID1A-deficient cells upon 

DSB induced by I-SceI. (Left) Representative flow cytometry profile. (Right) Each value 

is relative to the percentage of GFP+ cells in I-SceI-transfected cells without siRNA 

transfection, which was set to 1 and represents the mean ± SD of three independent 

experiments; Student’s t-test (* p<0.01). Western blot analyses to demonstrate the 

effectiveARID1A knockdown were shown next to the graph. 
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Figure 6. ARID1A deficiency sensitizes cells to PARP inhibitors. 

(A-C) ARID1A stably knockdown non-transformed normal breast epithelial cells 

MCF10A (A) and HMEC (B), ARID1A knockout HCT116 cells (C) were treated with 

indicated PARP inhibitors (Veliparib, Olaparib, Rucaparib, BMN673 concentrations, 

each). Clonogenic assay was performed. (Left) Representative images.  (Right) 

Quantitative results represent the mean ± SD of three independent experiments, Student’s 

t-test (* p<0.01). Western blot analyses to demonstrate the effectiveARID1A knockdown 

were shown next to the graph. 

(D) Western blot analyses show the effectiveARID1A knockdown in MDA-MB-231cells. 

(E and F) Stably ARID1A knockdown MDA-MB-231 cells (E) and ARID1A-knockout 

HCT116 cells (F) were treated with indicated PARP inhibitors for 72 hrs and apoptosis 

was determined by annexin V staining. Quantitative results represent the mean ± SD of 

three independent experiments, Student’s t-test (* p<0.01). Western blot analyses to 

demonstrate the activation of Caspase-3 in ARID1A-knockout HCT116 cells were shown 

next to the graph. 

(G) ARID1A-knockout HCT116 cells were reconstituted with wildtype or mutant 

(5548delG) ARID1A transiently and exposed to BMN673 for 48 hrs. Apoptosis was 

determined by annexin V staining (the mean ± SD of three independent experiments, 

Student’s t-test * p<0.01). 

(H) ARID1A-knockout HCT116 cells were exposed to Rucaparib or BMN673 in a dose-

dependent manner for 48 hrs. Apoptosis was determined by annexin V staining (the mean 

± SD of three independent experiments). 
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Figure 7. BMN673 selectively inhibits ARID1A-deficient xenograft tumor growth.  

(A) Representative images of MDA-MB-231 and HCT116 xenografts treated with 

vehicle control and BMN673 at the end point of scheduled treatment.   

(C-D) Control and ARID1A-depleted HCT116 (B and C) and MDA-MB-231 cells were 

inoculated subcutaneously in athymic nu/nu mice. Mice were randomized into vehicle 

control and BMN673 treatment group. Average tumor volum was plotted against days of 

treatment (n=6 for each group, Student’s t-test * p<0.01).  

(F) Average tumor volume of each group was determined at the end of the scheduled 

treatment (n=6 for each group, Student’s t-test * p<0.01).  

(H) Examples of the IHC analyses of xenograft tumors with anti-phospho-CHK1 (S317) 

and anti-actived caspase 3 antibodies. Scale bar, 50µM. Quantification of anti-phospho-

CHK1 (S317) and anti-actived caspase 3-positive cells of 3 individual tumors (Student’s 

t-test * p<0.01) 

 

Figure S1. Proteomic analysis of ATR-interacting proteins. Proteins identified from 

our proteomic analysis was shown. 

 

Figure S2. Schematic diagram of KillerRed system in U2OS TRE cells.  KillerRed 

(KR) is a light-stimulated ROS-inducer fused to a tet-repressor (tetR-KR), which binds to 

a TRE cassette (~ 90 kb) integrated at a defined genomic locus in U2OS cells (U2OS 

TRE cell line). By targeting the expression of KR to one specific genome site, the 

recruitment of proteins at DNA damaged genetic loci can be visualized. 
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Figure S3. Knockdown BRG1, BRM or ARID1A in U2OS cells. U2OS cells were 

infected with shRNA vectors targeting BRG1, BRM or ARID1A. After puromycin 

selection, knockdown efficiency was shown by Western blot analyses with indicated 

antibodies. 

 

Figure S4. ARID1A depletion did not affect the number of ATM foci formation 

after IR. Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to 

IR and immunostained with p-ATM (S1981).  (Top) Representative images, Scale bar, 

10µM. (Bottom) Data are presented from 3 independent experiments (*<0.01). 

 

Figure S5. ARID1A depletion did not affect the presence of DSBs after IR. Control 

cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to IR and DSBs were 

detected by the Comet Assay.  (Left) Representative images, Scale bar, 10µM. (Right) 

Data are presented from 3 independent experiments (n.s. Student t-test did not find 

statistical significance). 

 

Figure S6. ARID1A depletion did not affect the expression of DSB end resection 

factors.  (Left) Schematic diagrams of HR repair assay and SSA repair assay. In these 

two assays, DSB is induced by transfection I-SceI restriction enzyme and repaired via HR 

or SSA mechanism, which generate GFP positive cells.  (Right) Control cells (+/+) and 

ARID1A-depleted (-/-) HCT116 cells were exposed to IR and Western blot analyses were 

performed to examine the expression levels of DSB end resection factors with indicated 

antibodies. 
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Figure S7. ARID1A depletion did not affect the expression of ATM and MRN 

complex.  Control cells (+/+) and ARID1A-depleted (-/-) HCT116 cells were exposed to 

IR and Western blot analyses were performed with indicated antibodies. 
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 ACTB_HUMAN  Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB  

 ACTN1_HUMAN  Alpha-actinin-1 OS=Homo sapiens GN=ACTN1  

 ACTN4_HUMAN  Alpha-actinin-4 OS=Homo sapiens GN=ACTN4  

 ADDA_HUMAN  Alpha-adducin OS=Homo sapiens GN=ADD1  

 ADDG_HUMAN  Gamma-adducin OS=Homo sapiens GN=ADD3  

 ALBU_HUMAN  Serum albumin OS=Homo sapiens GN=ALB 

 ATR_HUMAN  Serine/threonine-protein kinase ATR OS=Homo sapiens GN=ATR  

 ATRIP_HUMAN  ATR-interacting protein OS=Homo sapiens GN=ATRIP  

ARI1A_HUMAN  AT-rich interactive domain-containing protein 1A OS=Homo sapiens GN=ARID1A  

 CAPR1_HUMAN  Caprin-1 OS=Homo sapiens GN=CAPRIN1  

 CLH1_HUMAN  Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC  

 CYTSA_HUMAN  Cytospin-A OS=Homo sapiens GN=SPECC1L  

 DDX3X_HUMAN  ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X  

 DDX5_HUMAN  Probable ATP-dependent RNA helicase DDX5 OS=Homo sapiens GN=DDX5  

 DHB4_HUMAN  Peroxisomal multifunctional enzyme type 2 OS=Homo sapiens GN=HSD17B4  

 DHX9_HUMAN  ATP-dependent RNA helicase A OS=Homo sapiens GN=DHX9  

 DREB_HUMAN  Drebrin OS=Homo sapiens GN=DBN1  

 DSG2_HUMAN  Desmoglein-2 OS=Homo sapiens GN=DSG2  

 ECHA_HUMAN  Trifunctional enzyme subunit alpha, mitochondrial OS=Homo sapiens GN=HADHA  

 EF2_HUMAN  Elongation factor 2 OS=Homo sapiens GN=EEF2  

 EZRI_HUMAN  Ezrin OS=Homo sapiens GN=EZR  

 FILA2_HUMAN  Filaggrin-2 OS=Homo sapiens GN=FLG2  

 FLII_HUMAN  Protein flightless-1 homolog OS=Homo sapiens GN=FLII  

 FLNA_HUMAN  Filamin-A OS=Homo sapiens GN=FLNA  

 G3BP1_HUMAN  Ras GTPase-activating protein-binding protein 1 OS=Homo sapiens GN=G3BP1  

 GRP75_HUMAN  Stress-70 protein, mitochondrial OS=Homo sapiens GN=HSPA9  

 GRP78_HUMAN  78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5  

 HNRPM_HUMAN  Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM  

 HNRPQ_HUMAN  Heterogeneous nuclear ribonucleoprotein Q OS=Homo sapiens GN=SYNCRIP  



 HNRPU_HUMAN  Heterogeneous nuclear ribonucleoprotein U OS=Homo sapiens GN=HNRNPU  

 HS90A_HUMAN  Heat shock protein HSP 90-alpha OS=Homo sapiens GN=HSP90AA1  

 HS90B_HUMAN  Heat shock protein HSP 90-beta OS=Homo sapiens GN=HSP90AB1  

 HSP71_HUMAN  Heat shock 70 kDa protein 1A/1B OS=Homo sapiens GN=HSPA1A  

 HSP7C_HUMAN  Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8  

 IF2B2_HUMAN  Insulin-like growth factor 2 mRNA-binding protein 2 OS=Homo sapiens GN=IGF2BP2  

 ILF3_HUMAN  Interleukin enhancer-binding factor 3 OS=Homo sapiens GN=ILF3  

 K1C10_HUMAN  Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10  

 K1C14_HUMAN  Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14  

 K1C9_HUMAN  Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9  

 K22E_HUMAN  Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2  

 K2C1_HUMAN  Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1  

 K2C5_HUMAN  Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5  

 K2C6B_HUMAN  Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B  

 KCTD3_HUMAN  BTB/POZ domain-containing protein KCTD3 OS=Homo sapiens GN=KCTD3  

 LAP2A_HUMAN  Lamina-associated polypeptide 2, isoform alpha OS=Homo sapiens GN=TMPO  

 LMNA_HUMAN  Prelamin-A/C OS=Homo sapiens GN=LMNA  

 MPRIP_HUMAN  Myosin phosphatase Rho-interacting protein OS=Homo sapiens GN=MPRIP  

 MYH10_HUMAN  Myosin-10 OS=Homo sapiens GN=MYH10  

 MYH14_HUMAN  Myosin-14 OS=Homo sapiens GN=MYH14  

 MYH9_HUMAN  Myosin-9 OS=Homo sapiens GN=MYH9  

 MYO1B_HUMAN  Unconventional myosin-Ib OS=Homo sapiens GN=MYO1B  

 MYO1C_HUMAN  Unconventional myosin-Ic OS=Homo sapiens GN=MYO1C  

 MYO6_HUMAN  Unconventional myosin-VI OS=Homo sapiens GN=MYO6  

 MYPT1_HUMAN  Protein phosphatase 1 regulatory subunit 12A OS=Homo sapiens GN=PPP1R12A  

 NUCL_HUMAN  Nucleolin OS=Homo sapiens GN=NCL  

 PARP1_HUMAN  Poly [ADP-ribose] polymerase 1 OS=Homo sapiens GN=PARP1  

 PLAK_HUMAN  Junction plakoglobin OS=Homo sapiens GN=JUP  

 RAI14_HUMAN  Ankycorbin OS=Homo sapiens GN=RAI14  



 RS27A_HUMAN  Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A  

 SFPQ_HUMAN  Splicing factor, proline- and glutamine-rich OS=Homo sapiens GN=SFPQ  

 SHKB1_HUMAN  SH3KBP1-binding protein 1 OS=Homo sapiens GN=SHKBP1  

 SHRM3_HUMAN  Protein Shroom3 OS=Homo sapiens GN=SHROOM3  

 SMTN_HUMAN  Smoothelin OS=Homo sapiens GN=SMTN  

 SRC8_HUMAN  Src substrate cortactin OS=Homo sapiens GN=CTTN  

 SUMO1_HUMAN  Small ubiquitin-related modifier 1 OS=Homo sapiens GN=SUMO1  

 TIF1B_HUMAN  Transcription intermediary factor 1-beta OS=Homo sapiens GN=TRIM28  

 TOP1_HUMAN  DNA topoisomerase 1 OS=Homo sapiens GN=TOP1  

 XRCC5_HUMAN  X-ray repair cross-complementing protein 5 OS=Homo sapiens GN=XRCC5  

 XRCC6_HUMAN  X-ray repair cross-complementing protein 6 OS=Homo sapiens GN=XRCC6  
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