459 research outputs found

    Schematic Cut elimination and the Ordered Pigeonhole Principle [Extended Version]

    Full text link
    In previous work, an attempt was made to apply the schematic CERES method [8] to a formal proof with an arbitrary number of {\Pi} 2 cuts (a recursive proof encapsulating the infinitary pigeonhole principle) [5]. However the derived schematic refutation for the characteristic clause set of the proof could not be expressed in the formal language provided in [8]. Without this formalization a Herbrand system cannot be algorithmically extracted. In this work, we provide a restriction of the proof found in [5], the ECA-schema (Eventually Constant Assertion), or ordered infinitary pigeonhole principle, whose analysis can be completely carried out in the framework of [8], this is the first time the framework is used for proof analysis. From the refutation of the clause set and a substitution schema we construct a Herbrand system.Comment: Submitted to IJCAR 2016. Will be a reference for Appendix material in that paper. arXiv admin note: substantial text overlap with arXiv:1503.0855

    Completeness of a first-order temporal logic with time-gaps

    Get PDF
    The first-order temporal logics with □ and ○ of time structures isomorphic to ω (discrete linear time) and trees of ω-segments (linear time with branching gaps) and some of its fragments are compared: the first is not recursively axiomatizable. For the second, a cut-free complete sequent calculus is given, and from this, a resolution system is derived by the method of Maslov

    Incompleteness of a first-order Gödel logic and some temporal logics of programs

    Get PDF
    It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal logic of linear discrete time with gaps follows

    Introducing Quantified Cuts in Logic with Equality

    Full text link
    Cut-introduction is a technique for structuring and compressing formal proofs. In this paper we generalize our cut-introduction method for the introduction of quantified lemmas of the form ∀x.A\forall x.A (for quantifier-free AA) to a method generating lemmas of the form ∀x1…∀xn.A\forall x_1\ldots\forall x_n.A. Moreover, we extend the original method to predicate logic with equality. The new method was implemented and applied to the TSTP proof database. It is shown that the extension of the method to handle equality and quantifier-blocks leads to a substantial improvement of the old algorithm

    Towards CERes in intuitionistic logic

    Get PDF

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    Characterization of the components of the thioredoxin system in Bacteroides fragilis and evaluation of its activity during oxidative stress

    Get PDF
    Objectives: Bacteroides fragilis has a pronounced ability to survive prolonged exposure to atmospheric oxygen. The major objective of this study was to biochemically characterize the components of the thioredoxin system in B. fragilis. The nitroreductase activity of TrxR was also assayed. Methods: Components of the thioredoxin system were expressed in E. coli and used in a disulfide reductase activity assay. Activity of TrxR was measured with purified recombinant enzyme or with cell extracts after or without exposure to oxygen or hydrogen peroxide, respectively. Results: Of all six thioredoxins tested, only thioredoxins A, D, and F were reduced by recombinant TrxR and natural TrxR present in B. fragilis cell extracts. Exposure to oxygen and hydrogen peroxide increased the activity of TrxR. Further, B. fragilis TrxR acts as a nitroreductase with furazolidone or 1-Chloro-2,4dinitrobenzene as substrates but cannot reduce metronidazole. Conclusion: TrxR shows an increase in activity under the conditions of oxidative stress and exerts nitroreductase activity. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
    • …
    corecore