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Abstract
Cut-elimination, introduced by Gentzen, plays an important role in automating the analysis
of mathematical proofs. The removal of cuts corresponds to the elimination of intermediate
statements (lemmas), resulting in an analytic proof. CERes is a method of cut-elimination by
resolution that relies on global proof transformations, in contrast to reductive methods, which use
local proof-rewriting transformations. By avoiding redundant operations, it obtains a speed-up
over Gentzen’s traditional method (and its variations). CERes has been successfully imple-
mented and applied to mathematical proofs, and it is fully developed for classical logic (first
and higher order), multi-valued logics and Gödel logic. But when it comes to mathematical
proofs, intuitionistic logic also plays an important role due to its constructive characteristics and
computational interpretation.

This paper presents current developments on adapting the CERes method to intuitionistic
sequent calculus LJ. First of all, we briefly describe the CERes method for classical logic and
the problems that arise when extending the method to intuitionistic logic. Then, we present the
solutions found for the mentioned problems for the subclass LJ− (the class of intuitionistic proofs
of an end-sequent containing no strong quantifiers and no formula on the right). In addition, we
explain, with an example, some ideas for improving the method and covering a bigger fragment
of LJ proofs. Finally, we summarize the results and point the direction for future research.
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1 Introduction

Proof analysis is an essential part of mathematical activity, since it leads often to better
proofs and occasionally to the discovery of important new mathematical concepts that allow
the structuring of existing arguments [15]. Abstract notions such as groups and probability,
for instance, are clear examples of concepts that are undoubtfully useful for organizing
common patterns of mathematical reasoning.

The elimination of unnecessary lemmas from a proof is a prominent example of a
technique for obtaining potentially simpler (or at least different) proofs. When a constructive
mathematical proof is formalized in the sequent calculus LJ, lemmas correspond to cuts.

Γ ` A Γ′, A ` C
Γ,Γ′ ` C cut

A proof without cuts has the subformula property: all formulas on the proof are (instances
of) subformulas of end-sequent formulas. Consequently, cut-free proofs of a theorem will use
only the theorem’s theory itself. The main result on cut-elimination - the Hauptsatz - was
proven by Gentzen [8, 9] in 1935. It states that the cut rule is admissible for the sequent
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calculi LK and LJ, for classical and intuitionistic logics respectively. Gentzen’s proof of the
Hauptsatz actually contains an algorithm for removing the cuts from a proof. Therefore,
cut-elimination, seen as a method to remove lemmas from formalized proofs, is one of the
most important techniques for automating proof analysis. Gentzen’s method and some of its
variants are often referred to as reductive cut-elimination, because they are based on local
proof-rewriting rules that gradually reduce the grade and rank of cuts.

The method CERes [5] (cut elimination by resolution) is an alternative to reductive
cut-elimination, and it is proven to display a non-elementary speed up over the latter. CERes
was first developed for first order classical logic, and then extended to second and higher
order logic [12, 11]. It has also been adapted to multi-valued logics [6] and Gödel logic [1].
The method has been implemented1 and applied successfully to proofs of moderate size, such
as the tape proof [2] and the lattice proof [13], in fully automatic mode. Also, Fürstenberg’s
proof of the infinitude of primes was successfully transformed, semi-automatically, into
Euclid’s argument of prime construction using CERes [3].

Intuitionistic logic, in contrast to classical logic, is based on a natural proof semantics [10]
which is reflected in the rules of natural deduction. Consequently, from an intuitionistic proof
of A ∨B, one can actually obtain a proof of one of the disjuncts, and from an intuitionistic
proof of ∃x.P (x), one can obtain a witness a such that P (a) is true. This is not always
the case in classical proofs. For this reason, intuitionistic logic is often referred to as a
constructive logic. This is particularly useful in mathematics when one wants not only to
guarantee the existence of a solution but to actually find it. This constructivism also makes
intuitionistic logic more suitable for modeling computations, since constructive proofs can be
directly related to algorithms.

The importance of intuitionistic logic for mathematics and computer science is the main
motivation for extending the CERes method to LJ. This paper presents the results obtained
so far, while pursuing this goal. More specifically, we present the CERes method for a
subclass of LJ proofs, namely, proofs with end sequents having no strong quantifiers and
no formula on the right side. This class represents proofs by contradiction in LJ. Observe
that a proof of the end sequent Γ ` F can be transformed into a proof by contradiction by
applying the ¬l rule and obtaining Γ,¬F ` as an end-sequent.

The paper is organized as follows: Section 2 briefly describes the CERes method for
classical logic and the problems that arise when extending the method to intuitionistic logic;
Section 3 presents the solutions found for the mentioned problems and shows the new revised
method applied to an example; Section 4 explains some ideas for improving the method and
covering a bigger fragment of LJ proofs; and finally, Section 5 summarizes the results and
points the direction for future research.

2 CERes in LK

The CERes method for classical logic is based on the computation of three structures from
an LK proof ϕ: a characteristic clause set CL(ϕ), a resolution refutation of this set and
proof projections of ϕ w.r.t the elements in CL(ϕ). By merging instances of the projections
and the resolution refutation properly, one obtains a proof with only atomic cuts (ACNF -
atomic cut normal form) of the same end sequent of ϕ. These three structures are informally
explained in the subsections below. A more detailed and precise definition of CERes for
LK is available in [7].

1 http://code.google.com/p/gapt/
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The remaining atomic cuts on the final proof are inessential [16], and, since we use
standard axioms (A ` A, where A is atomic), these can be eliminated using reductive
cut-elimination.

2.1 Characteristic clause set
The characteristic clause set is computed by removing from ϕ all the rules that operate on
end-sequent ancestors and the end-sequent ancestors themselves (including the end-sequent).
After that, what is left is a derivation of the empty sequent from a set of axioms. These
axioms contain only cut-ancestors and they compose the characteristic clause set. It is
important to note that some branches of ϕ might be merged during this procedure, if they
resulted from the application of a binary rule on an end-sequent ancestor. Consider the
sub-derivation of a proof below, in which cut ancestors are marked with ?:

P (a)? ` P (a) I
Q(a) ` Q(a)? I

P (a)?, P (a)→ Q(a) ` Q(a)?
→l

P (a)→ Q(a) ` (P (a)→ Q(a))?
→r

P (a)→ Q(a) ` ∃x.(P (x)→ Q(x))? ∃r

P (b)? ` P (b) I
Q(b) ` Q(b)? I

P (b)?, P (b)→ Q(b) ` Q(b)?
→l

P (b)→ Q(b) ` (P (b)→ Q(b))?
→r

P (b)→ Q(b) ` ∃x.(P (x)→ Q(x))? ∃r

(P (a)→ Q(a)) ∨ (P (b)→ Q(b)) ` ∃x.(P (x)→ Q(x))?
∨l

By removing all inferences on end-sequent ancestors, we obtain the following derivation:

P (a)?, P (b)? ` Q(a)?, Q(b)? I

P (a)? ` Q(a)?, (P (b)→ Q(b))?
→r

` (P (a)→ Q(a))?, (P (b)→ Q(b))?
→r

` (P (a)→ Q(a))?, ∃x.(P (x)→ Q(x))? ∃r

` ∃x.(P (x)→ Q(x))?,∃x.(P (x)→ Q(x))? ∃r

In this case, the sequent P (a), P (b) ` Q(a), Q(b) would be in the characteristic clause set.
I Remark. Observe that, in classical logic, this is not a problem, but in intuitionistic logic
(LJ - Figure 1) this is not a well-formed sequent since it has more than one formula on
the right side. Note also that the original derivation could easily be part of an LJ proof,
but the transformed derivation contains non-intuitionistic sequents. Thus, sequents of the
characteristic clause set might be classical, even if we start with an intuitionistic proof. As
they will be part of the final proof, it is not desirable that they are classical, because we
expect to obtain a cut-free proof in LJ.

2.2 Resolution refutation
By the transformation exemplified above, there exists an LK derivation of the empty sequent
from the clauses of CL(ϕ). Since LK is sound, the set CL(ϕ) is unsatisfiable. And since the
resolution calculus is complete, there exists a resolution refutation of CL(ϕ).

The resolution refutation, which can be obtained with a resolution theorem prover, is
used as a basis for the final proof, and can be seen as its skeleton. The resolution steps will
correspond to the atomic cuts.

2.3 Projections
The projections are derivations of a sequent from CL(ϕ) merged with the end-sequent. Dually
to what was done for the characteristic clause set, they are constructed by removing the rules

CSL’12
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A ` A [I]
Γ1 ` P Γ2, P ` C

Γ1,Γ2 ` C
[Cut]

Γ ` P
Γ,¬P ` [¬l]

Γ, P `
Γ ` ¬P [¬r]

Pi,Γ ` C
P1 ∧ P2,Γ ` C

[∧li]
Γ ` P Γ ` Q

Γ ` P ∧Q [∧r]

P,Γ ` C Q,Γ ` C
P ∨Q,Γ ` C [∨l]

Γ ` Pi

Γ ` P1 ∨ P2
[∨ri]

Γ1 ` P Q,Γ2 ` C
P → Q,Γ1,Γ2 ` C

[→l]
Γ, P ` Q

Γ ` P → Q
[→r]

P{x← α},Γ ` C
∃x.P,Γ ` C [∃l]

Γ ` P{x← t}
Γ ` ∃x.P [∃r]

P{x← t},Γ ` C
∀x.P,Γ ` C [∀l]

Γ ` P{x← α}
Γ ` ∀x.P [∀r]

P, P,Γ ` C
P,Γ ` C [Cl] Γ ` C

P,Γ ` C [Wl] Γ `
Γ ` P [Wr]

Figure 1 LJ: Sequent calculus for intuitionistic logic. It is assumed that α is a variable not
contained in P , Γ or C and t does not contain variables bound in P .

applied to cut-ancestors. Each sequent (clause) in CL(ϕ) will generate a projection, possibly
with variables that can later be instantiated to form the final proof. Using the same example
as before, the projection corresponding to the clause P (a), P (b) ` Q(a), Q(b) is the following:

P (a)? ` P (a) I
Q(a) ` Q(a)? I

P (a)?, P (a)→ Q(a) ` Q(a)?
→l

P (b)? ` P (b) I
Q(b) ` Q(b)? I

P (b)?, P (b)→ Q(b) ` Q(b)?
→l

P (a)?, P (b)?, (P (a)→ Q(a)) ∨ (P (b)→ Q(b)) ` Q(a)?, Q(b)?
∨l

I Remark. Note that, once again, the resulting derivation is classical. Since these will be
directly used on the final proof, it is also a problem that should be solved if we expect the
output of CERes to be intuitionistic when applied to LJ proofs.

Even if the resulting projections were intuitionistic, they are merged with the resolution
refutation of CL(ϕ), and if two sequents with one formula on the right side are merged, the
resulting sequent will have two formulas on the right side and will then be classical.

3 CERes in LJ

The problems described in Section 2 were addressed and solved for a subclass of LJ, namely
LJ− (Definition 2). The resulting iCERes method is presented in this section.

I Definition 1 (Strong and weak quantifiers). Let F be a formula. If ∀x occurs positively
(negatively) in F , then ∀x is called a strong (weak) quantifier. If ∃x occurs positively
(negatively) in F , then ∃x is called a weak (strong) quantifier. Let A1, ..., An ` B1, ..., Bm be
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a sequent. A quantifier is called strong (weak) on this sequent if it is strong (weak) on the
corresponding formula A1 ∧ ... ∧An → B1 ∨ ... ∨Bm.

I Definition 2 (LJ−). LJ− is the set of LJ proofs of end-sequents with no formula on the
right side and no strong quantifiers.

Note that, in principle, the condition of absence of formulas on the right side of the
end-sequent, can be satisfied by simply applying the ¬l inference rule at the bottom of the
proof, in order to negate and shift to the left the formula that occurred in the right side.
The other requirement, the absence of strong quantifiers, can be achieved by using methods
of skolemization of LJ proofs [4]. A more detailed discussion of the implications of using
these transformations is postponed to Section 4.

This class contains proofs by contradiction in LJ, which are exactly those proofs of
Γ ` F transformed into a proof of Γ,¬F ` with the application of a ¬l rule. It is also
worth mentioning that LJ− is a “nontrivial” class of proofs, in the sense that there exist
sequents of the form Γ ` which are provable classically but not intuitionistically (e.g.
¬∃x.∀y.(P (x)→ P (y)) `).

Although the problem was solved only for a subclass of LJ proofs, all definitions and
proofs on this section are valid for full LJ, with the exception of Theorem 16.

I Definition 3 (Intuitionistic Clause). An intuitionistic clause is a sequent composed only of
atoms or negated atoms and with the right hand side containing at most one formula.

I Definition 4 (Intuitionistic Clause Set with Negations). The intuitionistic characteristic
clause set is built analogously to the usual characteristic clause set, except that all the
formulas on the right hand side are negated and added to the left hand side:

If ν is an axiom, then CLI(ν) is the set containing the sub-sequent composed only of
the formulas that are cut-ancestors, such that all the formulas that would appear on the
right-hand side are negated and added to the left-hand side.
If ν is the result of the application of a unary rule on µ, then CLI(ν) = CLI(µ)
If ν is the result of the application of a binary rule on µ1 and µ2, we have to distinguish
two cases:

If the rule is applied to ancestors of a cut formula, then CLI(ν) = CLI(µ1) ∪CLI(µ2).
If the rule is applied to ancestors of the end-sequent, then CLI(ν) = CLI(µ1)×CLI(µ2).

Where2:
CLI(µ1)× CLI(µ2) = {C ◦D|C ∈ CLI(µ1), D ∈ CLI(µ2)}

Note that since the formulas on the right hand side are moved to the left hand side
already on the axioms, the clauses always have the right side empty. This guarantees that
we always have intuitionistic sequents and no conflicts arise while merging.

I Theorem 5 (Refutability of the Intuitionistic Clause Set). The intuitionistic clause set is
LJ-refutable.

Proof. Let ϕ be an LJ proof and CLI(ϕ) be its intuitionistic clause set built according to
Definition 4 and CL(ϕ) be its classical clause set obtained by the classical version of CERes.
For each clause Ci = Ai1, ..., A

i
ni
` Bi1, ..., Bimi

of the classical clause set, we build the closed
formula Fi = ∀x.¬(Ai1 ∧ ... ∧Aini

∧ ¬Bi1 ∧ ... ∧ ¬Bimi
).

2 The operation ◦ represents the merging of sequents, i.e., (Γ ` ∆) ◦ (Γ′ ` ∆′) = Γ,Γ′ ` ∆,∆′.

CSL’12
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By previous results, summarized in Section 2, we know that there is an LK refutation ψ
of CL(ϕ):

C1
... ...

Ck
...

`

By merging each formula Fi to its corresponding clause Ci and propagating it down the
refutation, we obtain an LK proof ψ1 from the formulas Fi, Ai1, ..., Aini

` Bi1, ..., Bimi
of the

end-sequent F1, ..., Fk `:

ϕ1
F1 ◦ C1

... ...

ϕk
Fk ◦ Ck

...
F1, ..., Fk `

where each ϕi is a derivation of Fi ◦ Ci from tautological axioms. We can transform the
proof ψ1 into a proof ψ2 of ` ¬(F1 ∧ ... ∧ Fk):

ψ1
F1, ..., Fk `

F1 ∧ ... ∧ Fk `
∧l × (k − 1)

` ¬(F1 ∧ ... ∧ Fk)
¬r

Since the axioms of this proof are tautological, we can transform this into an LJ proof
ψ3 via the following negative translation [14]:

A → ¬¬A∗
A∗ → A (if A is an atom)

(¬A)∗ → ¬A∗ (if A is an atom)
(A�B)∗ → (A∗�B∗),� ∈ {∧,∨,⇒}
(∃x.A)∗ → ∃x.A∗
(∀x.A)∗ → ∀x.¬¬A∗

The end-sequent of ψ3 is ` ¬(F̃1 ∧ ... ∧ F̃k), where each F̃i is the negative translation of
Fi. Note that ` ¬¬¬A is LJ-equivalent to ` ¬A, so there is still only one negation on this
end-sequent.

From the proof ψ3, we can construct the proof ψ4:

ψ3

` ¬(F̃1 ∧ ... ∧ F̃k)

Ξ1
` F̃1 ...

Ξn
` F̃k

` F̃1 ∧ ... ∧ F̃k
∧r × k

¬(F̃1 ∧ ... ∧ F̃k) `
¬l

` cut

Note that the end-sequent of each derivation Ξi is of the form:

` ¬¬∀x1....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

)

And each Ξi is:
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Ai1, ..., A
i
ni
,¬Bi1, ...,¬Bimi

`

Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

`
∧l × (ni +mi − 1)

` ¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

)
¬r,¬l,¬r

...
` ¬¬∀x2....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini

∧ ¬Bi1 ∧ ... ∧ ¬Bimi
)
∀r,¬l,¬r

` ¬¬∀x1....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

)
∀r,¬l,¬r

So, we obtain an LJ-refutation of the clauses Ai1, ..., Aini
,¬Bi1, ...,¬Bimi

` for every i,
which are exactly the elements of CLI(ϕ).

J

I Definition 6 (R¬). The R¬ calculus is a resolution calculus with the following rules:

Γ ` A Γ′, A′ ` ∆
Γσ,Γ′σ ` ∆σ R

Γ ` ¬A Γ′,¬A′ ` ∆
Γσ,Γ′σ ` ∆σ R¬

A,A′ ` ∆
Aσ ` ∆σ C

¬A,¬A′ ` ∆
¬Aσ ` ∆σ C¬

Γ, A `
Γ ` ¬A

¬r Γ ` A
Γ,¬A `

¬l

Where ∆ is a multi-set with at most one formula3 and σ is the most general unifier of A and
A′.

The choice of a modified resolution calculus is justified by the fact that a proof in this
calculus will be used as a part of the final LJ proof. In fact, any calculus for intuitionistic
logic could be used for the proof search itself, but then we would need a translation of the
corresponding proof object into an LJ-proof to use in this method.

I Lemma 7. If ϕ is an LJ-refutation of a set of intuitionistic clauses (Definition 3) S and
ϕ′ is a normal form of ϕ with respect to reductive cut-elimination, then any cut-formula in
ϕ′ is either an atom or a negated atom.

Proof. Assume, for the sake of contradiction, that ϕ′ contains a cut whose cut-formula
F is neither an atom nor a negated atom. Since the axioms of ϕ′ contain only atoms or
negated atoms, it must be the case that the left and right occurrences of F in this cut are
introduced, respectively, by inferences ρl and ρr occurring somewhere in ϕ′. Two cases can
be distinguished:

1. Both ρl and ρr occur immediately above the cut: in this case, either a grade reduction
rule can be applied, if both ρl and ρr are logical inferences, or a reduction over weakening,
if at least one of them is a weakening.

2. At least one of ρl and ρr does not occur immediately above the cut: in this case, a rank
reduction rule can be applied.

In both cases, the assumption contradicts the fact that ϕ′ is in normal form. Therefore,
it must be the case that all cut-formulas in ϕ′ are either atoms or negated atoms. J

3 Throughout the paper, ∆ stands as a multi-set with at most one formula.

CSL’12



492 Towards CERes in intuitionistic logic

I Lemma 8. If ϕ is an LJ-refutation of a set of intuitionistic clauses S and ϕ′ is a normal
form of ϕ with respect to reductive cut-elimination, then the only inference rules used in ϕ′
are ¬l, ¬r, cut and left contraction.

Proof. Assume, for the sake of contradiction, that there is an inference ρ in ϕ′ that is neither
a ¬l, nor a ¬r, nor a cut inference, nor a left contraction, and let F be its main formula.
Since ϕ′ is an LJ-refutation, its end-sequent is empty. Hence, F must be the ancestor of a
cut-formula, and since F is neither an atom nor a negated atom, its descendant cut-formula
is also neither an atom nor a negated atom. However, this contradicts Lemma 7, according to
which any cut-formula in ϕ′ must be either an atom or a negated atom. Therefore, inferences
that are neither ¬l, nor ¬r, nor cut, nor left contraction cannot occur in ϕ′. J

I Remark. All logical inferences that are neither ¬l nor ¬r disappear when ϕ is rewritten to
ϕ′ due to grade reduction rules. This is exemplified below for the conjunction case:

ϕ1
Γ1 ` A

ϕ2
Γ2 ` B

Γ1,Γ2 ` A ∧B
∧r

ϕ3
Γ3, A,B ` ∆

Γ3, A ∧B ` ∆
∧l

Γ1,Γ2,Γ3 ` ∆ cut ⇒

ϕ1
Γ1 ` A

ϕ2
Γ2 ` B

ϕ3
Γ3, A,B ` ∆

Γ2,Γ3, A ` ∆ cut

Γ1,Γ2,Γ3 ` ∆ cut

The same cannot be done with negation inferences. Observe that, as usual, the grade
reduction for negation requires the cut-formulas to be introduced by ¬l and ¬r:

ϕ1
Γ1, A `
Γ1 ` ¬A

¬r

ϕ2
Γ2 ` A

Γ2,¬A `
¬l

Γ1,Γ2 `
cut ⇒

ϕ1
Γ1, A `

ϕ2
Γ2 ` A

Γ1,Γ2 `
cut

However, since the intuitionistic clause can have negated atoms, it may be the case that,
(at least) one of the cut-formulas was directly introduced by an axiom, as shown in the
example proof below:

ϕ1
Γ1, A `
Γ1 ` ¬A

¬r Γ2,¬A `
Γ1,Γ2 `

cut

In such cases, the grade reduction rule for negation cannot be applied, and hence the
negation inference and the cut with a negated atomic formula remain.

I Lemma 9. If ϕ is an LJ-refutation of an unsatisfiable set of intuitionistic clauses S and
ϕ′ is a normal form of ϕ with respect to reductive cut-elimination, then the axioms of ϕ′ are
instances of the clauses of S.

Proof. On applying the rewriting rules for cut-elimination, the initial sequents are not
altered, except for the quantifier grade reduction rules, shown below:

ϕ1
Γ1 ` F (α)

Γ1 ` ∀x.F (x) ∀r

ϕ2
Γ2, F (t) ` ∆

Γ2,∀x.F (x) ` ∆ ∀l

Γ1,Γ2 ` ∆ cut ⇒

ϕ1{α← t}
Γ1 ` F (t)

ϕ2
Γ2, F (t) ` ∆

Γ1,Γ2 ` ∆ cut
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ϕ1
Γ1 ` F (t)

Γ1 ` ∃x.F (x) ∃r

ϕ2
Γ2, F (α) ` ∆

Γ2,∃x.F (x) ` ∆ ∃l

Γ1,Γ2 ` ∆ cut ⇒

ϕ1
Γ1 ` F (t)

ϕ2{α← t}
Γ2, F (t) ` ∆

Γ1,Γ2 ` ∆ cut

In order to eliminate the quantifier of the cut formula, the instantiated version of the
formulas must be used. But this imposes no problem, since we can apply the substitution
σ = {α← t} on the proof.

If X is an axiom clause in ϕ2, X{α← t} will be an axiom clause in ϕ2{α← t}. Finally,
ϕ′ will have axioms that are, in fact, instances of the clauses in S.

J

Next, we prove the completeness of the R¬ resolution calculus. In order to do that, we
need the lifting lemma for this calculus. Intuitively, this lemma guarantees that if there is a
resolution of instantiated terms, it is possible to transform (“lift”) this into a resolution of
the same terms with variables and a substitution.

I Definition 10. Let X and Y be clauses, then X ≤s Y iff there exists a substitution Θ
with XΘ = Y .

I Lemma 11 (Lifting). Let C and D be clauses with C ≤s C ′ and D ≤s D′. Assume that
C ′ and D′ have a R¬-resolvent E′. Then, there exists a R¬-resolvent E of C and D such
that E ≤s E′.

The proof of Lemma 11 is analogous to the one for the ordinary resolution calculus and
will not be described here.

I Theorem 12 (Completeness of R¬). Let S be an LJ-refutable set of intuitionistic clauses.
Then S is R¬-refutable.

Proof. Let ϕ be an LJ-refutation of S. By applying Gentzen’s proof-rewriting rules for cut-
elimination exhaustively, ϕ is rewritten to a normal form ϕ′, whose existence is guaranteed
by the fact that Gentzen’s proof-rewriting system is terminating (see Gentzen’s Hauptsatz
[8, 9]). By Lemmas 7 and 8, ϕ′ has only ¬l, ¬r, cut and left contraction inferences. As these
inference rules correspond, respectively, to the rules ¬l, ¬r, {R,R¬} and {C,C¬} (without
unification) of the R¬ calculus, ϕ′ can be immediately converted to a ground R¬-refutation
δ. By Lemma 9, the axioms of ϕ′ and hence also of δ are instances of the clauses in S.
Therefore, by the lifting lemma (Lemma 11), δ can be lifted into an R¬-refutation δ∗ of
S. J

Due to the way the intuitionistic clause set is constructed, all the clauses have no formula
on the right hand side. This means that the rule ¬l can be dropped from R¬ and the clause
sets used in our scenario will still be refutable. Also, the resolution rule on non-negated
atoms could also be eliminated in our case, since we could always replace any (non-negated)
resolution by negation inferences and negated resolution.

I Definition 13 (Intuitionistic Projection). An intuitionistic projection is built analogously
to a usual projection, except that all the formulas on the right side are negated and added
to the left side.

Let ϕ be a proof in LJ and C ∈ CLI(ϕ). Then the LJ-proof ϕ(C) is called an intuitionistic
projection and it is build inductively on the number of inferences of ϕ. Let ν be a node in ϕ
and ϕν(C) the projection for clause C until node ν:
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1. ν is a leaf: then ϕν(C) is the derivation consisting of applying a negation rule (¬l) to the
atoms which are cut-ancestors in order to shift them from the right to the left side (if
there is a cut-ancestor on the right).

2. ν is the result of a unary rule ξ applied to µ:
2.a. ξ operates on a cut ancestor: ϕν(C) = ϕµ(C)
2.b. ξ operates on an end sequent ancestor: ϕν(C) is ϕµ(C) plus the application of ξ to its

end-sequent
3. ν is the result of a binary rule ξ applied to µ1 and µ2:
3.a. ξ operates on a cut ancestor: ϕν(C) is ϕµi

(C) (i depends on which branch C is coming
from) plus some weakenings to obtain formulas that were used in the other branch.

3.b. ξ operates on an end sequent ancestor: ϕν(C) is the result of applying ξ to the
end-sequents of ϕµ1(C) and ϕµ2(C).

I Definition 14 (NACNF). A proof is said to be in negated atomic cut normal form (NACNF)
when all the cuts are on atoms or negated atoms.

I Definition 15 (iCERes). Let ϕ be a proof in LJ of a sequent S, CLI(ϕ) its intuitionistic
clause set (Definition 4) and π1, ..., πn the intuitionistic projections (Definition 13) of the
clauses of CLI(ϕ). By Theorems 5 and 12, there exists a grounded refutation ϕ∗ of CLI(ϕ).
We define iCERes as the procedure of computing the elements CLI(ϕ), π1, ..., πn, and ϕ∗
from ϕ and then merging (instances of) π1, ..., πn with ϕ∗ in the following way:

Let Ci be the clause of a leaf in ϕ∗. Then, Ci is replaced by the projection πi (with the
proper substitution of variables), which is actually a derivation of Ci ◦ S. Moreover, the
formulas of S are propagated down the refutation.

I Theorem 16. Let ϕ be an proof in LJ− (Definition 2). Then iCERes, applied to ϕ,
produces an intuitionistic negated atomic cut normal form.

Proof. From Definition 15, we can observe that the result of applying iCERes to an LJ-proof
consists of the resolution refutation in R¬ merged with the projections. These last elements
have no cuts and are derivations in LJ by definition. The refutation has resolution rules on
atoms and negated atoms, which will be the cuts on the final proof. Since the projections
have no formula on the right side of their end sequents, and the resolution sequents have no
more than one formula on the right side of each sequent, the final proof is an LJ-proof of an
end-sequent equal to the one of ϕ up to some contractions on the left. J

3.1 Example
In order to illustrate the iCERes method, we will apply it to the following LJ− proof:

Pα? ` Pα
I

Pfα ` Pfα I
Pf2α ` Pf2α?

I

Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, Pα→ Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, ∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` Pf2α?
∀l

∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
→r

∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
cl

∀x.(Px→ Pfx) ` ∀x.(Px→ Pf2x)?
∀r

Pa ` Pa? I
Pf2a? ` Pf2a?

I
Pf4a? ` Pf4a

I

Pf2a?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, (Pa→ Pf2a)?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, ∀x.(Px→ Pf2x)?, ∀x.(Px→ Pf2x)? ` Pf4a
∀l

Pa, ∀x.(Px→ Pf2x)? ` Pf4a
cl

Pa, ∀x.(Px→ Pf2x)? ` ∃z.Pf4z
∃r

Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
cut

Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l



A. Leitsch, G. Reis, and B. Woltzenlogel Paleo 495

Note that the cut formulas and cut ancestors are superscribed with ?. By removing
the rules applied on end-sequent ancestors and merging the branches as was described on
Definition 4, the intuitionistic clause set obtained is:

CLI(ϕ) = {Pα,¬Pf2α ` ; ¬Pa ` ; Pf4a `}

As was proved previously, there is a resolution refutation of this clause set on R¬:

Pα,¬Pf2α `
¬Pf2α ` ¬Pα

¬r
¬Pa `

¬Pf2a `
R¬{α← a}

Pf4a `
` ¬Pf4a

¬r
Pα,¬Pf2α `

Pf2a `
R¬{α← f2a}

` ¬Pf2a
¬r

` R¬

The projections of the three clauses of CLI are:

π1[α] :

Pα ` Pα I
Pfα ` Pfα I

Pf2α ` Pf2α
I

¬Pf2α, Pf2α `
¬l

Pfα,¬Pf2α, Pfα→ Pf2α `
→l

Pα,¬Pf2α, Pα→ Pfα, Pfα→ Pf2α `
→l

Pα,¬Pf2α,∀x.(Px→ Pfx),∀x.(Px→ Pfx) `
∀l × 2

Pα,¬Pf2α,∀x.(Px→ Pfx) `
cl

Pα,¬Pf2α, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pα,¬Pf2α, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

π2 :

Pa ` Pa I

¬Pa, Pa `
¬l

¬Pa, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

¬Pa, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

π3 :

Pf4a ` Pf4a
I

Pf4a ` ∃z.Pf4z
∃r

Pf4a, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pf4a, Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

By merging the appropriate instances of the projections on the resolution refutation, we
obtain the final proof, depicted in Figure 3. The projections are colored accordingly. The
projection π1 used on the left side had α replaced with a and the one used on the right side
had α replaced with f2a. Note that this proof is in NACNF, containing only cuts on atoms
or negated atoms, and it is still a proof in LJ.

4 On the possibility of extending iCERes to a larger class of proofs

On the example of Section 3.1, the last application of the rule ¬l was used in order to make
the end-sequent fulfill the condition of not having formulas on the right. This is a simple
operation, but, as we mentioned before, it is not trivial how to transform the final proof
into a proof of the sequent where the shifted formula is on the right side. In this section we
analyse a possible solution to deal with end-sequents without this restriction.
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Applying iCERes to a proof in LJ where the end-sequent has a formula on the right will
yield intuitionistic projections and a refutation in the R¬ calculus. But when these elements
are put together, it might be the case that some classical sequents appear (in the sense of
having more than one formula on the right). Nevertheless, it seems to be often the case that
applying reductive cut-elimination on this final LK proof and removing the cuts on atoms
and negated atoms will again result in an LJ proof. We present here an example to illustrate
this.

The proof used is the same as the one on Section 3.1, except for the last application of ¬l.

Pα? ` Pα
I

Pfα ` Pfα I
Pf2α ` Pf2α?

I

Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, Pα→ Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, ∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` Pf2α?
∀l

∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
→r

∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
cl

∀x.(Px→ Pfx) ` ∀x.(Px→ Pf2x)?
∀r

Pa ` Pa? I
Pf2a? ` Pf2a?

I
Pf4a? ` Pf4a

I

Pf2a?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, (Pa→ Pf2a)?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, ∀x.(Px→ Pf2x)?, ∀x.(Px→ Pf2x)? ` Pf4a
∀l

Pa, ∀x.(Px→ Pf2x)? ` Pf4a
cl

Pa, ∀x.(Px→ Pf2x)? ` ∃z.Pf4z
∃r

Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
cut

The intuitionistic characteristic clause set is (the same as before):

CLI = {Pα,¬Pf2α ` ; ¬Pa ` ; Pf4a `}

The projections for each element of CLI are:

π1[α] :

Pα ` Pα I
Pfα ` Pfα I

Pf2α ` Pf2α
I

¬Pf2α, Pf2α `
¬l

Pfα,¬Pf2α, Pfα→ Pf2α `
→l

Pα,¬Pf2α, Pα→ Pfα, Pfα→ Pf2α `
→l

Pα,¬Pf2α,∀x.(Px→ Pfx),∀x.(Px→ Pfx) `
∀l × 2

Pα,¬Pf2α,∀x.(Px→ Pfx) `
cl

Pα,¬Pf2α, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

π2 :

Pa ` Pa I

¬Pa, Pa `
¬l

¬Pa, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

π3 :

Pf4a ` Pf4a
I

Pf4a ` ∃z.Pf4z
∃r

Pf4a, Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

The resolution refutation is (the same as before):

Pα,¬Pf2α `
¬Pf2α ` ¬Pα

¬r
¬Pa `

¬Pf2a `
R¬{α← a}

Pf4a `
` ¬Pf4a

¬r
Pα,¬Pf2α `

Pf2a `
R¬{α← f2a}

` ¬Pf2a
¬r

` R¬
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Pa ` Pa I
Pfa ` Pfa I

Pf2a ` Pf2a
I

Pf3a ` Pf3a
I

Pf4a ` Pf4a
I

Pf4a ` ∃z.Pf4z
∃r

Pa, Pf3a, Pf3a→ Pf4a ` ∃z.Pf4z
→l

Pf2a, Pa, Pf2a→ Pf3a, Pf3a→ Pf4a ` ∃z.Pf4z
→l

Pf2a, Pa, ∀x.(Px→ Pfx),∀x.(Px→ Pfx) ` ∃z.Pf4z
∀l × 2

Pf2a, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
cl

Pa, Pfa, Pfa→ Pf2a,∀x.(Px→ Pfx) ` ∃z.Pf4z
→l

Pa, Pa, Pa→ Pfa, Pfa→ Pf2a,∀x.(Px→ Pfx) ` ∃z.Pf4z
→l

Pa, Pa,∀x.(Px→ Pfx),∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` ∃z.Pf4z
∀l × 2

Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
cl × 3

Figure 2 Proof obtained after eliminating the atomic cuts.

Given the projections and grounded resolution, the final proof is depicted in Figure 4.
Note that, since the end-sequent had a formula on the right side, the final proof is not in LJ,
but in LK. Even though the refutation and projections were intuitionistic, when they are
put together some sequents end up having more than one formula on the right.

But if reductive cut-elimination is applied to the proof in Figure 4 and all useless
weakenings and contractions are removed, the result is again a proof in LJ, depicted in
Figure 2.

The second condition, the absence of strong quantifiers in the end-sequent, can be satisfied
by removing strong quantifiers with methods of skolemization of LJ-proofs [4]. It is important
to note, however, that the end-sequent of a final proof ϕ obtained by applying iCERes to
an LJ-proof that has been skolemized will also contain skolem terms. Depending on the
application, it might be desirable to transform ϕ into a proof of the original non-skolemized
end-sequent. Unfortunately, it is not yet clear how to perform such a deskolemization.

5 Conclusions and future work

This paper presents a method of cut-elimination by resolution for a fragment of LJ. In order
to develop this method, it was necessary to define intuitionistic clause sets, intuitionistic
projections and a new resolution calculus. It was proved that this calculus is complete
with respect to LJ on clause logic. Applying the CERes method (previously developed for
classical logic) with these new definitions on an LJ proof, such that its end-sequent does
not contain a formula on the right side, will yield an intuitionistic proof with only atomic or
negated atomic cuts.

It is important to observe that, for any LJ-proof, the projections and refutation of the
clause set, as defined in this paper, are both intuitionistic. But when these elements are
assembled together to compose the final proof, a classical sequent might occur. This is why
the current method has to be restricted to a fragment of LJ for which this undesirable effect
cannot occur. Interestingly, this fragment corresponds to the class of intuitionistic proofs by
contradiction.

Immediate future work will consist of extending iCERes to larger classes of (and hopefully
all) LJ-proofs. It seems likely that this will require more sophisticated ways of assembling
projections and refutations.

In addition to extending iCERes to larger classes of proofs, we also intend to eventually
apply it to a real mathematical proof, as we have done with the classical CERes for
Fürstenberg’s proof of the infinitude of primes.
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