Towards CERes in intuitionistic logic

Alexander Leitsch, Giselle Reis, and Bruno Woltzenlogel Paleo
Theory and Logic Group, Institut für Computersprachen
Technische Universität Wien, Vienna, Austria
\{leitsch, giselle, bruno\}@logic.at

Abstract

Cut-elimination, introduced by Gentzen, plays an important role in automating the analysis of mathematical proofs. The removal of cuts corresponds to the elimination of intermediate statements (lemmas), resulting in an analytic proof. CERes is a method of cut-elimination by resolution that relies on global proof transformations, in contrast to reductive methods, which use local proof-rewriting transformations. By avoiding redundant operations, it obtains a speed-up over Gentzen's traditional method (and its variations). CERes has been successfully implemented and applied to mathematical proofs, and it is fully developed for classical logic (first and higher order), multi-valued logics and Gödel logic. But when it comes to mathematical proofs, intuitionistic logic also plays an important role due to its constructive characteristics and computational interpretation.

This paper presents current developments on adapting the CERes method to intuitionistic sequent calculus LJ. First of all, we briefly describe the CERes method for classical logic and the problems that arise when extending the method to intuitionistic logic. Then, we present the solutions found for the mentioned problems for the subclass $\mathbf{L} \mathbf{J}^{-}$(the class of intuitionistic proofs of an end-sequent containing no strong quantifiers and no formula on the right). In addition, we explain, with an example, some ideas for improving the method and covering a bigger fragment of $\mathbf{L J}$ proofs. Finally, we summarize the results and point the direction for future research.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases cut-elimination, resolution, LJ

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.485

1 Introduction

Proof analysis is an essential part of mathematical activity, since it leads often to better proofs and occasionally to the discovery of important new mathematical concepts that allow the structuring of existing arguments [15]. Abstract notions such as groups and probability, for instance, are clear examples of concepts that are undoubtfully useful for organizing common patterns of mathematical reasoning.

The elimination of unnecessary lemmas from a proof is a prominent example of a technique for obtaining potentially simpler (or at least different) proofs. When a constructive mathematical proof is formalized in the sequent calculus $\mathbf{L J}$, lemmas correspond to cuts.

$$
\frac{\Gamma \vdash A \quad \Gamma^{\prime}, A \vdash C}{\Gamma, \Gamma^{\prime} \vdash C} c u t
$$

A proof without cuts has the subformula property: all formulas on the proof are (instances of) subformulas of end-sequent formulas. Consequently, cut-free proofs of a theorem will use only the theorem's theory itself. The main result on cut-elimination - the Hauptsatz - was proven by Gentzen [8, 9] in 1935. It states that the cut rule is admissible for the sequent

© Alexander Leitsch, Giselle Reis, and Bruno Woltzenlogel Paleo;
calculi $\mathbf{L K}$ and $\mathbf{L J}$, for classical and intuitionistic logics respectively. Gentzen's proof of the Hauptsatz actually contains an algorithm for removing the cuts from a proof. Therefore, cut-elimination, seen as a method to remove lemmas from formalized proofs, is one of the most important techniques for automating proof analysis. Gentzen's method and some of its variants are often referred to as reductive cut-elimination, because they are based on local proof-rewriting rules that gradually reduce the grade and rank of cuts.

The method CERes [5] (cut elimination by resolution) is an alternative to reductive cut-elimination, and it is proven to display a non-elementary speed up over the latter. CERes was first developed for first order classical logic, and then extended to second and higher order logic [12, 11]. It has also been adapted to multi-valued logics [6] and Gödel logic [1]. The method has been implemented ${ }^{1}$ and applied successfully to proofs of moderate size, such as the tape proof [2] and the lattice proof [13], in fully automatic mode. Also, Fürstenberg's proof of the infinitude of primes was successfully transformed, semi-automatically, into Euclid's argument of prime construction using CERes [3].

Intuitionistic logic, in contrast to classical logic, is based on a natural proof semantics [10] which is reflected in the rules of natural deduction. Consequently, from an intuitionistic proof of $A \vee B$, one can actually obtain a proof of one of the disjuncts, and from an intuitionistic proof of $\exists x . P(x)$, one can obtain a witness a such that $P(a)$ is true. This is not always the case in classical proofs. For this reason, intuitionistic logic is often referred to as a constructive logic. This is particularly useful in mathematics when one wants not only to guarantee the existence of a solution but to actually find it. This constructivism also makes intuitionistic logic more suitable for modeling computations, since constructive proofs can be directly related to algorithms.

The importance of intuitionistic logic for mathematics and computer science is the main motivation for extending the CERes method to LJ. This paper presents the results obtained so far, while pursuing this goal. More specifically, we present the CERes method for a subclass of LJ proofs, namely, proofs with end sequents having no strong quantifiers and no formula on the right side. This class represents proofs by contradiction in LJ. Observe that a proof of the end sequent $\Gamma \vdash F$ can be transformed into a proof by contradiction by applying the \neg_{l} rule and obtaining $\Gamma, \neg F \vdash$ as an end-sequent.

The paper is organized as follows: Section 2 briefly describes the CERes method for classical logic and the problems that arise when extending the method to intuitionistic logic; Section 3 presents the solutions found for the mentioned problems and shows the new revised method applied to an example; Section 4 explains some ideas for improving the method and covering a bigger fragment of LJ proofs; and finally, Section 5 summarizes the results and points the direction for future research.

2 CERes in LK

The CERes method for classical logic is based on the computation of three structures from an LK proof φ : a characteristic clause set $C L(\varphi)$, a resolution refutation of this set and proof projections of φ w.r.t the elements in $C L(\varphi)$. By merging instances of the projections and the resolution refutation properly, one obtains a proof with only atomic cuts (ACNF atomic cut normal form) of the same end sequent of φ. These three structures are informally explained in the subsections below. A more detailed and precise definition of CERes for LK is available in [7].

[^0]The remaining atomic cuts on the final proof are inessential [16], and, since we use standard axioms ($A \vdash A$, where A is atomic), these can be eliminated using reductive cut-elimination.

2.1 Characteristic clause set

The characteristic clause set is computed by removing from φ all the rules that operate on end-sequent ancestors and the end-sequent ancestors themselves (including the end-sequent). After that, what is left is a derivation of the empty sequent from a set of axioms. These axioms contain only cut-ancestors and they compose the characteristic clause set. It is important to note that some branches of φ might be merged during this procedure, if they resulted from the application of a binary rule on an end-sequent ancestor. Consider the sub-derivation of a proof below, in which cut ancestors are marked with \star :

By removing all inferences on end-sequent ancestors, we obtain the following derivation:

$$
\begin{gathered}
\frac{\overline{P(a)^{\star}, P(b)^{\star} \vdash Q(a)^{\star}, Q(b)^{\star}}}{} I \\
\frac{P(a)^{\star} \vdash Q(a)^{\star},(P(b) \rightarrow Q(b))^{\star}}{\frac{\vdash(P(a) \rightarrow Q(a))^{\star},(P(b) \rightarrow Q(b))^{\star}}{\vdash}} \rightarrow_{r} \\
\frac{\frac{\vdash(P(a) \rightarrow Q(a))^{\star}, \exists x \cdot(P(x) \rightarrow Q(x))^{\star}}{\vdash \exists x \cdot(P(x) \rightarrow Q(x))^{\star}, \exists x \cdot(P(x) \rightarrow Q(x))^{\star}} \exists_{r}}{\exists_{r}} . ~
\end{gathered}
$$

In this case, the sequent $P(a), P(b) \vdash Q(a), Q(b)$ would be in the characteristic clause set. - Remark. Observe that, in classical logic, this is not a problem, but in intuitionistic logic (LJ - Figure 1) this is not a well-formed sequent since it has more than one formula on the right side. Note also that the original derivation could easily be part of an LJ proof, but the transformed derivation contains non-intuitionistic sequents. Thus, sequents of the characteristic clause set might be classical, even if we start with an intuitionistic proof. As they will be part of the final proof, it is not desirable that they are classical, because we expect to obtain a cut-free proof in $\mathbf{L J}$.

2.2 Resolution refutation

By the transformation exemplified above, there exists an $\mathbf{L K}$ derivation of the empty sequent from the clauses of $C L(\varphi)$. Since $\mathbf{L K}$ is sound, the set $C L(\varphi)$ is unsatisfiable. And since the resolution calculus is complete, there exists a resolution refutation of $C L(\varphi)$.

The resolution refutation, which can be obtained with a resolution theorem prover, is used as a basis for the final proof, and can be seen as its skeleton. The resolution steps will correspond to the atomic cuts.

2.3 Projections

The projections are derivations of a sequent from $C L(\varphi)$ merged with the end-sequent. Dually to what was done for the characteristic clause set, they are constructed by removing the rules

$$
\begin{gathered}
\frac{A \vdash A}{A \vdash \mathrm{I}] \quad} \quad \begin{array}{c}
\Gamma_{1} \vdash P \\
\Gamma_{1}, \Gamma_{2} \vdash C
\end{array} \Gamma_{2}, P \vdash C \\
\frac{\Gamma \vdash P}{\Gamma, \neg P \vdash}\left[\neg_{l}\right] \quad \frac{\Gamma, P \vdash}{\Gamma \vdash \neg P}\left[\neg_{r}\right] \\
\frac{P_{i}, \Gamma \vdash C}{P_{1} \wedge P_{2}, \Gamma \vdash C}\left[\wedge_{l i}\right] \quad \\
\frac{P \vdash P \vdash C}{\Gamma \vdash P \wedge Q}\left[\wedge_{r}\right] \\
\frac{P \vee Q, \Gamma \vdash C}{P \vee C}\left[\vee_{l}\right] \quad \frac{\Gamma \vdash P_{i}}{\Gamma \vdash P_{1} \vee P_{2}}\left[\vee_{r i}\right] \\
\frac{\Gamma_{1} \vdash P \quad Q, \Gamma_{2} \vdash C}{P \rightarrow Q, \Gamma_{1}, \Gamma_{2} \vdash C}\left[\rightarrow{ }_{l}\right] \quad \frac{\Gamma, P \vdash Q}{\Gamma \vdash P \rightarrow Q}\left[\rightarrow_{r}\right] \\
\frac{P\{x \leftarrow \alpha\}, \Gamma \vdash C}{\exists x . P, \Gamma \vdash C}\left[\exists_{l}\right] \quad \frac{\Gamma \vdash P\{x \leftarrow t\}}{\Gamma \vdash \exists x . P}\left[\exists_{r}\right] \\
\frac{P\{x \leftarrow t\}, \Gamma \vdash C}{\forall x . P, \Gamma \vdash C}\left[\forall_{l}\right] \quad \frac{\Gamma \vdash P\{x \leftarrow \alpha\}}{\Gamma \vdash \forall x . P}\left[\forall_{r}\right] \\
\frac{P, P, \Gamma \vdash C}{P, \Gamma \vdash C}\left[C_{l}\right] \quad \frac{\Gamma \vdash C}{P, \Gamma \vdash C}\left[W_{l}\right] \quad \frac{\Gamma \vdash}{\Gamma \vdash P}\left[W_{r}\right]
\end{gathered}
$$

Figure $1 \mathbf{L J}$: Sequent calculus for intuitionistic logic. It is assumed that α is a variable not contained in P, Γ or C and t does not contain variables bound in P.
applied to cut-ancestors. Each sequent (clause) in $C L(\varphi)$ will generate a projection, possibly with variables that can later be instantiated to form the final proof. Using the same example as before, the projection corresponding to the clause $P(a), P(b) \vdash Q(a), Q(b)$ is the following:

$$
\frac{\overline{P(a)^{\star} \vdash P(a)} I \quad \overline{Q(a) \vdash Q(a)^{\star}} I \quad \overline{P(b)^{\star} \vdash P(b)} I \quad \overline{Q(b) \vdash Q(b)^{\star}} I}{\frac{P(a)^{\star}, P(a) \rightarrow Q(a) \vdash Q(a)^{\star}}{P(a)^{\star}, P(b)^{\star},(P(a) \rightarrow Q(a)) \vee(P(b) \rightarrow Q(b)) \vdash Q(a)^{\star}, Q(b)^{\star}} \rightarrow_{l}} \frac{\frac{P(b)^{\star}, P(b) \rightarrow Q(b) \vdash Q(b)^{\star}}{} \vee_{l}}{l}
$$

- Remark. Note that, once again, the resulting derivation is classical. Since these will be directly used on the final proof, it is also a problem that should be solved if we expect the output of CERes to be intuitionistic when applied to LJ proofs.

Even if the resulting projections were intuitionistic, they are merged with the resolution refutation of $C L(\varphi)$, and if two sequents with one formula on the right side are merged, the resulting sequent will have two formulas on the right side and will then be classical.

3 CERes in LJ

The problems described in Section 2 were addressed and solved for a subclass of LJJ, namely $\mathbf{L} \mathbf{J}^{-}$(Definition 2). The resulting iCERes method is presented in this section.

- Definition 1 (Strong and weak quantifiers). Let F be a formula. If $\forall x$ occurs positively (negatively) in F, then $\forall x$ is called a strong (weak) quantifier. If $\exists x$ occurs positively (negatively) in F, then $\exists x$ is called a weak (strong) quantifier. Let $A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{m}$ be
a sequent. A quantifier is called strong (weak) on this sequent if it is strong (weak) on the corresponding formula $A_{1} \wedge \ldots \wedge A_{n} \rightarrow B_{1} \vee \ldots \vee B_{m}$.
- Definition $2\left(\mathbf{L J} \mathbf{J}^{-}\right) . \mathbf{L J} \mathbf{J}^{-}$is the set of $\mathbf{L J}$ proofs of end-sequents with no formula on the right side and no strong quantifiers.

Note that, in principle, the condition of absence of formulas on the right side of the end-sequent, can be satisfied by simply applying the \neg_{l} inference rule at the bottom of the proof, in order to negate and shift to the left the formula that occurred in the right side. The other requirement, the absence of strong quantifiers, can be achieved by using methods of skolemization of $\mathbf{L J}$ proofs [4]. A more detailed discussion of the implications of using these transformations is postponed to Section 4.

This class contains proofs by contradiction in $\mathbf{L J}$, which are exactly those proofs of $\Gamma \vdash F$ transformed into a proof of $\Gamma, \neg F \vdash$ with the application of a \neg_{l} rule. It is also worth mentioning that $\mathbf{L} \mathbf{J}^{-}$is a "nontrivial" class of proofs, in the sense that there exist sequents of the form $\Gamma \vdash$ which are provable classically but not intuitionistically (e.g. $\neg \exists x . \forall y .(P(x) \rightarrow P(y)) \vdash)$.

Although the problem was solved only for a subclass of $\mathbf{L J}$ proofs, all definitions and proofs on this section are valid for full $\mathbf{L J}$, with the exception of Theorem 16.

- Definition 3 (Intuitionistic Clause). An intuitionistic clause is a sequent composed only of atoms or negated atoms and with the right hand side containing at most one formula.
- Definition 4 (Intuitionistic Clause Set with Negations). The intuitionistic characteristic clause set is built analogously to the usual characteristic clause set, except that all the formulas on the right hand side are negated and added to the left hand side:
- If ν is an axiom, then $C L^{I}(\nu)$ is the set containing the sub-sequent composed only of the formulas that are cut-ancestors, such that all the formulas that would appear on the right-hand side are negated and added to the left-hand side.
- If ν is the result of the application of a unary rule on μ, then $C L^{I}(\nu)=C L^{I}(\mu)$
- If ν is the result of the application of a binary rule on μ_{1} and μ_{2}, we have to distinguish two cases:
= If the rule is applied to ancestors of a cut formula, then $C L^{I}(\nu)=C L^{I}\left(\mu_{1}\right) \cup C L^{I}\left(\mu_{2}\right)$.
- If the rule is applied to ancestors of the end-sequent, then $C L^{I}(\nu)=C L^{I}\left(\mu_{1}\right) \times C L^{I}\left(\mu_{2}\right)$.

Where ${ }^{2}$:

$$
C L^{I}\left(\mu_{1}\right) \times C L^{I}\left(\mu_{2}\right)=\left\{C \circ D \mid C \in C L^{I}\left(\mu_{1}\right), D \in C L^{I}\left(\mu_{2}\right)\right\}
$$

Note that since the formulas on the right hand side are moved to the left hand side already on the axioms, the clauses always have the right side empty. This guarantees that we always have intuitionistic sequents and no conflicts arise while merging.

- Theorem 5 (Refutability of the Intuitionistic Clause Set). The intuitionistic clause set is LJ-refutable.

Proof. Let φ be an LJ proof and $C L^{I}(\varphi)$ be its intuitionistic clause set built according to Definition 4 and $C L(\varphi)$ be its classical clause set obtained by the classical version of CERes. For each clause $C_{i}=A_{1}^{i}, \ldots, A_{n_{i}}^{i} \vdash B_{1}^{i}, \ldots, B_{m_{i}}^{i}$ of the classical clause set, we build the closed formula $F_{i}=\forall \bar{x} . \neg\left(A_{1}^{i} \wedge \ldots \wedge A_{n_{i}}^{i} \wedge \neg B_{1}^{i} \wedge \ldots \wedge \neg B_{m_{i}}^{i}\right)$.

[^1]By previous results, summarized in Section 2, we know that there is an LK refutation ψ of $C L(\varphi)$:

By merging each formula F_{i} to its corresponding clause C_{i} and propagating it down the refutation, we obtain an LK proof ψ_{1} from the formulas $F_{i}, A_{1}^{i}, \ldots, A_{n_{i}}^{i} \vdash B_{1}^{i}, \ldots, B_{m_{i}}^{i}$ of the end-sequent $F_{1}, \ldots, F_{k} \vdash$:

where each φ_{i} is a derivation of $F_{i} \circ C_{i}$ from tautological axioms. We can transform the proof ψ_{1} into a proof ψ_{2} of $\vdash \neg\left(F_{1} \wedge \ldots \wedge F_{k}\right)$:

$$
\frac{\frac{\psi_{1}}{\overline{F_{1}, \ldots, F_{k} \vdash}}}{\frac{F_{1} \wedge \ldots \wedge F_{k} \vdash}{\vdash \neg\left(F_{1} \wedge \ldots \wedge F_{k}\right)}} \wedge_{l} \times(k-1)
$$

Since the axioms of this proof are tautological, we can transform this into an $\mathbf{L J}$ proof ψ_{3} via the following negative translation [14]:

$$
\begin{aligned}
A & \rightarrow \neg \neg A^{*} \\
A^{*} & \rightarrow A(\text { if A is an atom }) \\
(\neg A)^{*} & \rightarrow \neg A^{*}(\text { if A is an atom }) \\
(A \square B)^{*} & \rightarrow\left(A^{*} \square B^{*}\right), \square \in\{\wedge, \vee, \Rightarrow\} \\
(\exists x \cdot A)^{*} & \rightarrow \exists x . A^{*} \\
(\forall x . A)^{*} & \rightarrow \forall x . \neg \neg A^{*}
\end{aligned}
$$

The end-sequent of ψ_{3} is $\vdash \neg\left(\tilde{F}_{1} \wedge \ldots \wedge \tilde{F}_{k}\right)$, where each \tilde{F}_{i} is the negative translation of F_{i}. Note that $\vdash \neg \neg \neg A$ is LJ-equivalent to $\vdash \neg A$, so there is still only one negation on this end-sequent.

From the proof ψ_{3}, we can construct the proof ψ_{4} :

$$
\frac{\psi_{3}}{\qquad \neg\left(\tilde{F}_{1} \wedge \ldots \wedge \tilde{F}_{k}\right)} \quad \frac{\Xi_{1}}{\Xi_{n}} \begin{aligned}
& \vdash \tilde{F}_{1} \ldots \vdash \tilde{F}_{k} \\
& \vdash \tilde{F}_{1} \wedge \ldots \wedge \tilde{F}_{k} \\
& \neg\left(\tilde{F}_{1} \wedge \ldots \wedge \tilde{F}_{k}\right) \vdash \\
& \vdash
\end{aligned} \neg_{l} \times k
$$

Note that the end-sequent of each derivation Ξ_{i} is of the form:

$$
\vdash \neg \neg \forall x_{1} \ldots \neg \neg \neg \forall x_{r} . \neg \neg \neg\left(A_{1}^{i} \wedge \ldots \wedge A_{n_{i}}^{i} \wedge \neg B_{1}^{i} \wedge \ldots \wedge \neg B_{m_{i}}^{i}\right)
$$

And each Ξ_{i} is:

So, we obtain an LJ-refutation of the clauses $A_{1}^{i}, \ldots, A_{n_{i}}^{i}, \neg B_{1}^{i}, \ldots, \neg B_{m_{i}}^{i} \vdash$ for every i, which are exactly the elements of $C L^{I}(\varphi)$.

Definition $6(\mathbf{R}\urcorner)$. The $\mathbf{R}\urcorner$ calculus is a resolution calculus with the following rules:

$$
\begin{array}{cc}
\frac{\Gamma \vdash A \quad \Gamma^{\prime}, A^{\prime} \vdash \Delta}{\Gamma \sigma, \Gamma^{\prime} \sigma \vdash \Delta \sigma} R & \frac{\Gamma \vdash \neg A \quad \Gamma^{\prime}, \neg A^{\prime} \vdash \Delta}{\Gamma \sigma, \Gamma^{\prime} \sigma \vdash \Delta \sigma} R \neg \\
\frac{A, A^{\prime} \vdash \Delta}{A \sigma \vdash \Delta \sigma} C & \frac{\neg A, \neg A^{\prime} \vdash \Delta}{\neg A \sigma \vdash \Delta \sigma} C \neg \\
\frac{\Gamma, A \vdash}{\Gamma \vdash \neg A} \neg_{r} & \frac{\Gamma \vdash A}{\Gamma, \neg A \vdash} \neg_{l}
\end{array}
$$

Where Δ is a multi-set with at most one formula ${ }^{3}$ and σ is the most general unifier of A and A^{\prime}.

The choice of a modified resolution calculus is justified by the fact that a proof in this calculus will be used as a part of the final LJ proof. In fact, any calculus for intuitionistic logic could be used for the proof search itself, but then we would need a translation of the corresponding proof object into an $\mathbf{L} \mathbf{J}$-proof to use in this method.

- Lemma 7. If φ is an LJ-refutation of a set of intuitionistic clauses (Definition 3) \mathcal{S} and φ^{\prime} is a normal form of φ with respect to reductive cut-elimination, then any cut-formula in φ^{\prime} is either an atom or a negated atom.

Proof. Assume, for the sake of contradiction, that φ^{\prime} contains a cut whose cut-formula F is neither an atom nor a negated atom. Since the axioms of φ^{\prime} contain only atoms or negated atoms, it must be the case that the left and right occurrences of F in this cut are introduced, respectively, by inferences ρ_{l} and ρ_{r} occurring somewhere in φ^{\prime}. Two cases can be distinguished:

1. Both ρ_{l} and ρ_{r} occur immediately above the cut: in this case, either a grade reduction rule can be applied, if both ρ_{l} and ρ_{r} are logical inferences, or a reduction over weakening, if at least one of them is a weakening.
2. At least one of ρ_{l} and ρ_{r} does not occur immediately above the cut: in this case, a rank reduction rule can be applied.

In both cases, the assumption contradicts the fact that φ^{\prime} is in normal form. Therefore, it must be the case that all cut-formulas in φ^{\prime} are either atoms or negated atoms.

[^2]- Lemma 8. If φ is an LJ-refutation of a set of intuitionistic clauses \mathcal{S} and φ^{\prime} is a normal form of φ with respect to reductive cut-elimination, then the only inference rules used in φ^{\prime} are \neg_{l}, \neg_{r}, cut and left contraction.

Proof. Assume, for the sake of contradiction, that there is an inference ρ in φ^{\prime} that is neither a \neg_{l}, nor a \neg_{r}, nor a cut inference, nor a left contraction, and let F be its main formula. Since φ^{\prime} is an LJ-refutation, its end-sequent is empty. Hence, F must be the ancestor of a cut-formula, and since F is neither an atom nor a negated atom, its descendant cut-formula is also neither an atom nor a negated atom. However, this contradicts Lemma 7, according to which any cut-formula in φ^{\prime} must be either an atom or a negated atom. Therefore, inferences that are neither \neg_{l}, nor \neg_{r}, nor cut, nor left contraction cannot occur in φ^{\prime}.

- Remark. All logical inferences that are neither \neg_{l} nor \neg_{r} disappear when φ is rewritten to φ^{\prime} due to grade reduction rules. This is exemplified below for the conjunction case:

The same cannot be done with negation inferences. Observe that, as usual, the grade reduction for negation requires the cut-formulas to be introduced by \neg_{l} and \neg_{r} :

$$
\begin{gathered}
\left.\begin{array}{c}
\varphi_{1} \\
\varphi_{1} \\
\frac{\Gamma_{1}, A \vdash}{\Gamma_{1} \vdash \neg A} \neg_{r}
\end{array} \begin{array}{c}
\Gamma_{2} \vdash A \\
\Gamma_{2}, \neg A \vdash \\
\Gamma_{l}, \Gamma_{2} \vdash \\
\Gamma_{2}
\end{array}\right]
\end{gathered} \begin{array}{cc}
\varphi_{1} & \varphi_{2} \\
\Gamma_{1}, A \vdash & \Gamma_{2} \vdash A \\
\Gamma_{1}, \Gamma_{2} \vdash &
\end{array}
$$

However, since the intuitionistic clause can have negated atoms, it may be the case that, (at least) one of the cut-formulas was directly introduced by an axiom, as shown in the example proof below:

$$
\frac{\stackrel{\varphi_{1}}{ }}{\frac{\Gamma_{1}, A \vdash}{\Gamma_{1} \vdash \neg A} \neg_{r} \overline{\Gamma_{2}, \neg A \vdash}} \mathrm{\Gamma}_{1}, \Gamma_{2} \vdash \mathrm{cut}
$$

In such cases, the grade reduction rule for negation cannot be applied, and hence the negation inference and the cut with a negated atomic formula remain.

- Lemma 9. If φ is an $\boldsymbol{L J}$-refutation of an unsatisfiable set of intuitionistic clauses \mathcal{S} and φ^{\prime} is a normal form of φ with respect to reductive cut-elimination, then the axioms of φ^{\prime} are instances of the clauses of \mathcal{S}.

Proof. On applying the rewriting rules for cut-elimination, the initial sequents are not altered, except for the quantifier grade reduction rules, shown below:

$$
\begin{array}{cc}
\varphi_{1} & \varphi_{2} \\
\frac{\Gamma_{1} \vdash F(\alpha)}{\Gamma_{1} \vdash \forall x . F(x)} \forall_{r} & \frac{\Gamma_{2}, F(t) \vdash \Delta}{\Gamma_{2}, \forall x . F(x) \vdash \Delta} \forall_{l} \\
\Gamma_{1}, \Gamma_{2} \vdash \Delta &
\end{array} \quad \begin{array}{cc}
\varphi_{1}\{\alpha \leftarrow t\} & \varphi_{2} \\
& \Rightarrow
\end{array} \begin{array}{ccc}
\Gamma_{1} \vdash F(t) & \Gamma_{2}, F(t) \vdash \Delta \\
\Gamma_{1}, \Gamma_{2} \vdash \Delta \\
c u t
\end{array}
$$

In order to eliminate the quantifier of the cut formula, the instantiated version of the formulas must be used. But this imposes no problem, since we can apply the substitution $\sigma=\{\alpha \leftarrow t\}$ on the proof.

If X is an axiom clause in $\varphi_{2}, X\{\alpha \leftarrow t\}$ will be an axiom clause in $\varphi_{2}\{\alpha \leftarrow t\}$. Finally, φ^{\prime} will have axioms that are, in fact, instances of the clauses in \mathcal{S}.

Next, we prove the completeness of the $R\urcorner$ resolution calculus. In order to do that, we need the lifting lemma for this calculus. Intuitively, this lemma guarantees that if there is a resolution of instantiated terms, it is possible to transform ("lift") this into a resolution of the same terms with variables and a substitution.

Definition 10. Let X and Y be clauses, then $X \leq_{s} Y$ iff there exists a substitution Θ with $X \Theta=Y$.

- Lemma 11 (Lifting). Let C and D be clauses with $C \leq_{s} C^{\prime}$ and $D \leq_{s} D^{\prime}$. Assume that C^{\prime} and D^{\prime} have a R^{\urcorner}-resolvent E^{\prime}. Then, there exists a R^{\urcorner}-resolvent E of C and D such that $E \leq_{s} E^{\prime}$.

The proof of Lemma 11 is analogous to the one for the ordinary resolution calculus and will not be described here.

- Theorem 12 (Completeness of $\mathbf{R}\urcorner$). Let \mathcal{S} be an $\boldsymbol{L J}$-refutable set of intuitionistic clauses. Then \mathcal{S} is R^{\urcorner}-refutable.

Proof. Let φ be an $\mathbf{L J}$-refutation of \mathcal{S}. By applying Gentzen's proof-rewriting rules for cutelimination exhaustively, φ is rewritten to a normal form φ^{\prime}, whose existence is guaranteed by the fact that Gentzen's proof-rewriting system is terminating (see Gentzen's Hauptsatz $[8,9]$). By Lemmas 7 and $8, \varphi^{\prime}$ has only \neg_{l}, \neg_{r}, cut and left contraction inferences. As these inference rules correspond, respectively, to the rules $\neg_{l}, \neg_{r},\{R, R \neg\}$ and $\{C, C \neg\}$ (without unification) of the \mathbf{R}^{\urcorner}calculus, φ^{\prime} can be immediately converted to a ground $\left.\mathbf{R}\right\urcorner$-refutation δ. By Lemma 9 , the axioms of φ^{\prime} and hence also of δ are instances of the clauses in \mathcal{S}. Therefore, by the lifting lemma (Lemma 11), δ can be lifted into an $\mathbf{R}\urcorner$-refutation δ^{*} of \mathcal{S}.

Due to the way the intuitionistic clause set is constructed, all the clauses have no formula on the right hand side. This means that the rule \neg_{l} can be dropped from \mathbf{R}^{\urcorner}and the clause sets used in our scenario will still be refutable. Also, the resolution rule on non-negated atoms could also be eliminated in our case, since we could always replace any (non-negated) resolution by negation inferences and negated resolution.

Definition 13 (Intuitionistic Projection). An intuitionistic projection is built analogously to a usual projection, except that all the formulas on the right side are negated and added to the left side.

Let φ be a proof in $\mathbf{L J}$ and $C \in C L^{I}(\varphi)$. Then the $\mathbf{L J}$-proof $\varphi(C)$ is called an intuitionistic projection and it is build inductively on the number of inferences of φ. Let ν be a node in φ and $\varphi_{\nu}(C)$ the projection for clause C until node ν :

1. ν is a leaf: then $\varphi_{\nu}(C)$ is the derivation consisting of applying a negation rule $\left(\neg_{l}\right)$ to the atoms which are cut-ancestors in order to shift them from the right to the left side (if there is a cut-ancestor on the right).
2. $\quad \nu$ is the result of a unary rule ξ applied to μ :
2.a. ξ operates on a cut ancestor: $\varphi_{\nu}(C)=\varphi_{\mu}(C)$
2.b. ξ operates on an end sequent ancestor: $\varphi_{\nu}(C)$ is $\varphi_{\mu}(C)$ plus the application of ξ to its end-sequent
3. ν is the result of a binary rule ξ applied to μ_{1} and μ_{2} :
3.a. ξ operates on a cut ancestor: $\varphi_{\nu}(C)$ is $\varphi_{\mu_{i}}(C)$ (i depends on which branch C is coming from) plus some weakenings to obtain formulas that were used in the other branch.
3.b. ξ operates on an end sequent ancestor: $\varphi_{\nu}(C)$ is the result of applying ξ to the end-sequents of $\varphi_{\mu_{1}}(C)$ and $\varphi_{\mu_{2}}(C)$.

- Definition 14 (NACNF). A proof is said to be in negated atomic cut normal form (NACNF) when all the cuts are on atoms or negated atoms.
- Definition 15 (iCERes). Let φ be a proof in LJ of a sequent $S, C L^{I}(\varphi)$ its intuitionistic clause set (Definition 4) and π_{1}, \ldots, π_{n} the intuitionistic projections (Definition 13) of the clauses of $C L^{I}(\varphi)$. By Theorems 5 and 12 , there exists a grounded refutation φ^{*} of $C L^{I}(\varphi)$. We define iCERes as the procedure of computing the elements $C L^{I}(\varphi), \pi_{1}, \ldots, \pi_{n}$, and φ^{*} from φ and then merging (instances of) π_{1}, \ldots, π_{n} with φ^{*} in the following way:

Let C_{i} be the clause of a leaf in φ^{*}. Then, C_{i} is replaced by the projection π_{i} (with the proper substitution of variables), which is actually a derivation of $C_{i} \circ S$. Moreover, the formulas of S are propagated down the refutation.

- Theorem 16. Let φ be an proof in $\boldsymbol{L J}^{-}$(Definition 2). Then $\boldsymbol{i C E R e s}$, applied to φ, produces an intuitionistic negated atomic cut normal form.

Proof. From Definition 15, we can observe that the result of applying iCERes to an LJ-proof consists of the resolution refutation in $R\urcorner$ merged with the projections. These last elements have no cuts and are derivations in LJ by definition. The refutation has resolution rules on atoms and negated atoms, which will be the cuts on the final proof. Since the projections have no formula on the right side of their end sequents, and the resolution sequents have no more than one formula on the right side of each sequent, the final proof is an LJ-proof of an end-sequent equal to the one of φ up to some contractions on the left.

3.1 Example

In order to illustrate the iCERes method, we will apply it to the following $\mathbf{L} \mathbf{J}^{-}$proof:

Note that the cut formulas and cut ancestors are superscribed with \star. By removing the rules applied on end-sequent ancestors and merging the branches as was described on Definition 4, the intuitionistic clause set obtained is:

$$
C L^{I}(\varphi)=\left\{P \alpha, \neg P f^{2} \alpha \vdash ; \neg P a \vdash ; P f^{4} a \vdash\right\}
$$

As was proved previously, there is a resolution refutation of this clause set on $R\urcorner$:

The projections of the three clauses of $C L^{I}$ are:

$$
\begin{aligned}
& \pi_{1}[\alpha]:
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{P \alpha, \neg P f^{2} \alpha, P \alpha \rightarrow P f \alpha, P f \alpha \rightarrow P f^{2} \alpha \vdash}{P \alpha, \neg P f^{2} \alpha, \forall x .(P x \rightarrow P f x), \forall x .(P x \rightarrow P f x) \vdash} \rightarrow_{l}}{l} \forall_{l} \times 2 \\
& \frac{P \alpha, \neg P f^{2} \alpha, \forall x .(P x \rightarrow P f x) \vdash}{} c_{l}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{P \alpha, \neg P f^{2} \alpha, P a, \forall x .(P x \rightarrow P f x), \neg \exists z . P f^{4} z \vdash} \neg l
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{2}: \quad \pi_{3}: \\
& \frac{\frac{\overline{P a \vdash P a}}{\neg P a, P a \vdash}^{\frac{\sigma_{l}}{}} \neg_{l}}{\frac{\neg P a, P a, \forall x .(P x \rightarrow P f x) \vdash \exists z . P f^{4} z}{\neg P a, P a, \forall x .(P x \rightarrow P f x), \neg \exists z . P f^{4} z \vdash}} \neg_{l} \\
& \begin{array}{c}
\frac{{\overline{P f^{4} a \vdash P f^{4} a}}_{P f^{4} a \vdash \exists z \cdot P f^{4} z}}{\frac{\exists_{r}}{P f^{4} a, P a, \forall x .(P x \rightarrow P f x) \vdash \exists z \cdot P f^{4} z}} \underset{P f^{4} a, P a, \forall x .(P x \rightarrow P f x), \neg \exists z \cdot P f^{4} z \vdash}{ } \quad \neg_{l}
\end{array}
\end{aligned}
$$

By merging the appropriate instances of the projections on the resolution refutation, we obtain the final proof, depicted in Figure 3. The projections are colored accordingly. The projection π_{1} used on the left side had α replaced with a and the one used on the right side had α replaced with $f^{2} a$. Note that this proof is in NACNF, containing only cuts on atoms or negated atoms, and it is still a proof in LJ.

4 On the possibility of extending iCERes to a larger class of proofs

On the example of Section 3.1, the last application of the rule \neg_{l} was used in order to make the end-sequent fulfill the condition of not having formulas on the right. This is a simple operation, but, as we mentioned before, it is not trivial how to transform the final proof into a proof of the sequent where the shifted formula is on the right side. In this section we analyse a possible solution to deal with end-sequents without this restriction.

Applying iCERes to a proof in LJ where the end-sequent has a formula on the right will yield intuitionistic projections and a refutation in the $R\urcorner$ calculus. But when these elements are put together, it might be the case that some classical sequents appear (in the sense of having more than one formula on the right). Nevertheless, it seems to be often the case that applying reductive cut-elimination on this final LK proof and removing the cuts on atoms and negated atoms will again result in an $\mathbf{L J}$ proof. We present here an example to illustrate this.

The proof used is the same as the one on Section 3.1, except for the last application of \neg_{l}.

$$
\begin{array}{clll}
\frac{\overline{P \alpha^{\star} \vdash P \alpha}}{} I \frac{\overline{P f \alpha \vdash P f \alpha} I}{} \frac{\overline{P f^{2} \alpha \vdash P f^{2} \alpha^{\star}}}{P f \alpha, P f \alpha \rightarrow P f^{2} \alpha \vdash P f^{2} \alpha^{\star}}
\end{array} \rightarrow_{l}
$$

The intuitionistic characteristic clause set is (the same as before):

$$
C L^{I}=\left\{P \alpha, \neg P f^{2} \alpha \vdash ; \neg P a \vdash ; P f^{4} a \vdash\right\}
$$

The projections for each element of $C L^{I}$ are:

$$
\pi_{1}[\alpha]:
$$

$$
\begin{gathered}
\pi_{2}: \\
\frac{\frac{P}{P a \vdash P a}_{\neg P a, P a \vdash}}{}{ }^{\neg}{ }_{l} \\
\neg P a, P a, \forall x \cdot(P x \rightarrow P f x) \vdash \exists z \cdot P f^{4} z \\
\\
\hline P 2
\end{gathered}
$$

$$
\frac{\frac{}{P f^{4} a \vdash P f^{4} a}}{\frac{P f^{4} a \vdash \exists z \cdot P f^{4} z}{P f^{4} a, P a, \forall x \cdot(P x \rightarrow P f x) \vdash \exists z \cdot P f^{4} z} \exists_{r}} w \times 2
$$

The resolution refutation is (the same as before):

- Figure 2 Proof obtained after eliminating the atomic cuts.

Given the projections and grounded resolution, the final proof is depicted in Figure 4. Note that, since the end-sequent had a formula on the right side, the final proof is not in $\mathbf{L J}$, but in LK. Even though the refutation and projections were intuitionistic, when they are put together some sequents end up having more than one formula on the right.

But if reductive cut-elimination is applied to the proof in Figure 4 and all useless weakenings and contractions are removed, the result is again a proof in $\mathbf{L J}$, depicted in Figure 2.

The second condition, the absence of strong quantifiers in the end-sequent, can be satisfied by removing strong quantifiers with methods of skolemization of $\mathbf{L J}$-proofs [4]. It is important to note, however, that the end-sequent of a final proof φ obtained by applying iCERes to an LJ-proof that has been skolemized will also contain skolem terms. Depending on the application, it might be desirable to transform φ into a proof of the original non-skolemized end-sequent. Unfortunately, it is not yet clear how to perform such a deskolemization.

5 Conclusions and future work

This paper presents a method of cut-elimination by resolution for a fragment of $\mathbf{L J}$. In order to develop this method, it was necessary to define intuitionistic clause sets, intuitionistic projections and a new resolution calculus. It was proved that this calculus is complete with respect to LJ on clause logic. Applying the CERes method (previously developed for classical logic) with these new definitions on an LJ proof, such that its end-sequent does not contain a formula on the right side, will yield an intuitionistic proof with only atomic or negated atomic cuts.

It is important to observe that, for any LJ-proof, the projections and refutation of the clause set, as defined in this paper, are both intuitionistic. But when these elements are assembled together to compose the final proof, a classical sequent might occur. This is why the current method has to be restricted to a fragment of $\mathbf{L} \mathbf{J}$ for which this undesirable effect cannot occur. Interestingly, this fragment corresponds to the class of intuitionistic proofs by contradiction.

Immediate future work will consist of extending iCERes to larger classes of (and hopefully all) LJ-proofs. It seems likely that this will require more sophisticated ways of assembling projections and refutations.

In addition to extending iCERes to larger classes of proofs, we also intend to eventually apply it to a real mathematical proof, as we have done with the classical CERes for Fürstenberg's proof of the infinitude of primes.

\square Figure 3 Final proof after applying the method to an LJ-proof of an end-sequent with no formula on the right.
$\overline{P f a \vdash P f a} \quad I \quad \frac{\overline{P f^{2} a \vdash P f^{2} a}}{\neg P f^{2} a, P f^{2} a \vdash}$

$\frac{\frac{P a \vdash P a}{P a, \neg P f^{2} a, P a \rightarrow P f a, P f a \rightarrow P f^{2} a \vdash}}{P a, \neg P f^{2} a, \forall x .(P x \rightarrow P f x), \forall x .(P x \rightarrow P f x) \vdash} \forall_{l} \times 2$
$P a, \neg P f^{2} a, \forall x \cdot(P x \rightarrow P f x), \forall x \cdot(P x \rightarrow P f x)$
$P a, \neg P f^{2} a, \forall x \cdot(P x \rightarrow P f x) \vdash$
c_{l}
$w \times 2$
$\overline{P a, \neg P f^{2} a, P a, \forall x .(P x \rightarrow P f x) \vdash \exists z \cdot P f^{4} z}$
$\neg P f^{2} a, P a, \forall x \cdot(P x \rightarrow P f x) \vdash \exists z \cdot P f^{4} z, \neg P a$
$\neg P a, P a, \forall x \cdot(P x \rightarrow P f x) \vdash \exists z \cdot P f^{4} z \quad w \times 2$
$\neg P a, P a, \forall x \cdot(P x \rightarrow P f x) \vdash \exists z \cdot P f^{4} z$ cut

Figure 4 Final proof after applying the method to an LJ-proof of an end-sequent with a formula on the right.
— References
1 Matthias Baaz, Agata Ciabattoni, and Christian G. Fermüller. Cut elimination for first order Gödel logic by hyperclause resolution. In LPAR 2008, volume 5330 of $L N C S$, pages 451-466, 2008.
2 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr. Cut-elimination: Experiments with ceres. In Franz Baader and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) 2004, volume 3452 of Lecture Notes in Computer Science, pages 481-495. Springer, 2005.
3 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr. Ceres: An analysis of Fürstenberg's proof of the infinity of primes. Theoretical Computer Science, 403:160-175, 2008.
4 Matthias Baaz and Rosalie Iemhoff. On skolemization in constructive theories. Journal of Symbolic Logic, 73(3):969-998, 2008.
5 Matthias Baaz and Alexander Leitsch. Cut-elimination and redundancy-elimination by resolution. Journal of Symbolic Computation, 29(2):149-176, 2000.
6 Matthias Baaz and Alexander Leitsch. CERES in many-valued logics. In Proceedings of LPAR 2004, volume 3452 of Lecture Notes in Artificial Intelligence, pages 1-20. Springer, 2005.

7 Matthias Baaz and Alexander Leitsch. Methods of Cut-Elimination, volume 34 of Trends in Logic. Springer, 2011.
8 Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39(1):176-210, dec 1935.
9 Gerhard Gentzen. Untersuchungen über das logische Schließen II. Mathematische Zeitschrift, 39(1):405-431, dec 1935.
10 J.Y. Girard, Y. Lafont, and P. Taylor. Proofs and types. Cambridge University Press New York, 1989.
11 Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Ceres in higher-order logic. Annals of Pure and Applied Logic, 162(12):1001-1034, 2011.
12 Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo. CERES in second-order logic. Technical report, Vienna University of Technology, 2008.
13 Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo. Herbrand sequent extraction. In Serge Autexier, John Campbell, Julio Rubio, Volker Sorge, Masakazu Suzuki, and Freek Wiedijk, editors, Intelligent Computer Mathematics, volume 5144 of Lecture Notes in Computer Science, pages 462-477. Springer Berlin, 2008.
14 Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer Monographs in Mathematics. Springer Verlag, 2008.
15 G. Polya. Mathematics and plausible reasoning, 2 vols. Princeton, 2 edition, 1968. vol 1. Induction and analogy in mathematics; vol 2. Patterns of plausible inference.
16 Gaisi Takeuti. Proof Theory. North-Holland/American Elsevier, 1975.

[^0]: 1 http://code.google.com/p/gapt/

[^1]: ${ }^{2}$ The operation \circ represents the merging of sequents, i.e., $(\Gamma \vdash \Delta) \circ\left(\Gamma^{\prime} \vdash \Delta^{\prime}\right)=\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}$.

[^2]: ${ }^{3}$ Throughout the paper, Δ stands as a multi-set with at most one formula.

