8 research outputs found

    Optimierte Abstimmung der Umsteigebeziehungen im ungetakteten ÖPNV unter Berücksichtigung der Umlaufplanung

    Get PDF
    Die Optimierung eines ungetakteten Fahrplans verschiedener Verkehrsunternehmen im Hinblick auf die Umsteigequalität der Fahrgäste ist ein schwieriges Abstimmungsproblem. In der Praxis werden darüber hinaus Anforderungen an die operative Umsetzbarkeit eines Ergebnisfahrplans gestellt. Wir stellen einen Ansatz vor, der planerisches Expertenwissen mit dem Potenzial mathematischer Optimierung verknüpft und dabei die Realisierbarkeit des Umlaufplanes sicherstellt

    National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021

    Get PDF
    We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future

    Allocating Small Transporters to Large Jobs

    No full text
    We optimize the assignment of transporters to several jobs. Each job consists of processing a large, decomposable volume. A fleet of transporters is given, each of which can only process a limited volume at a time. After processing its share, a transporter must rest for a short time before being able to process another part. This time is only dependent on the assigned job, not on the transporter. Other transporters can take over the processing while a transporter rests. Transporters assigned to the same job wait for their turn in a queue. A transporter can only be assigned to one job. Our goal is to simultaneously minimize the maximum job completion time and the number of assigned transporters by computing the frontier of Pareto optimal solutions. In general, we show that it is NP-hard in the strong sense to compute even a single point on the Pareto frontier. We provide exact methods and heuristics to compute the Pareto frontier for the general problem and compare them computationally

    Allocating Small Transporters to Large Jobs

    No full text
    We optimize the assignment of transporters to several jobs. Each job consists of processing a large, decomposable volume. A fleet of transporters is given, each of which can only process a limited volume at a time. After processing its share, a transporter must rest for a short time before being able to process another part. This time is only dependent on the assigned job, not on the transporter. Other transporters can take over the processing while a transporter rests. Transporters assigned to the same job wait for their turn in a queue. A transporter can only be assigned to one job. Our goal is to simultaneously minimize the maximum job completion time and the number of assigned transporters by computing the frontier of Pareto optimal solutions. In general, we show that it is NP-hard in the strong sense to compute even a single point on the Pareto frontier. We provide exact methods and heuristics to compute the Pareto frontier for the general problem and compare them computationally

    Quantifying Covid19-vaccine location strategies for Germany

    Get PDF
    Background: Vaccines are an important tool to limit the health and economic damage of the Covid-19 pandemic. Several vaccine candidates already provided promising effectiveness data, but it is crucial for an effective vaccination campaign that people are willing and able to get vaccinated as soon as possible. Taking Germany as an example, we provide insights of using a mathematical approach for the planning and location of vaccination sites to optimally administer vaccines against Covid-19. Methods: We used mathematical programming for computing an optimal selection of vaccination sites out of a given set (i.e., university hospitals, health department related locations and general practices). Different patient-to-facility assignments and doctor-to-facility assignments and different constraints on the number of vaccinees per site or maximum travel time are used. Results: In order to minimize the barriers for people to get vaccinated, i.e., limit the one-way travel journey (airline distance) by around 35 km for 75% of the population (with a maximum of 70 km), around 80 well-positioned facilities can be enough. If only the 38 university hospitals are being used, the 75% distance increases to around 50 km (with a maximum of 145 km). Using all 400 health departments or all 56 000 general practices can decrease the journey length significantly, but comes at the price of more required staff and possibly wastage of only partially used vaccine containers. Conclusions: In the case of free assignments, the number of required physicians can in most scenarios be limited to 2 000, which is also the minimum with our assumptions. However, when travel distances for the patients are to be minimized, capacities of the facilities must be respected, or administrative assignments are prespecified, an increased number of physicians is unavoidable.Peer Reviewe

    National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021

    No full text
    We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future

    Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

    No full text
    corecore