2,505 research outputs found

    Charmonium Suppression - Interplay of Hadronic and Partonic Degrees of Freedom

    Get PDF
    Last year the E866-group of the Fermilab measured the xFx_F dependence of J/ΨJ/\Psi and Ψ\Psi' suppression in pApA collisions. We discuss two of the effects found in that experiment with regard to color coherence effects: the different suppression of the J/ΨJ/\Psi and the Ψ\Psi' at xF<0x_F<0 and the significant suppression of both at large xFx_F. The small xFx_F regions is dominated by fully formed charmonium states and thus enables us to discuss the formation time and the cross section of the different charmonium states. In the large xFx_F region the interaction of the charmonium states with nuclear matter has to be described by partonic degrees of freedom, because in that kinematic domain the formation time is much larger than the nuclear radii. The understanding of this region will be crucial for the interpretation of the data of the future heavy ion colliders RHIC and LHC.Comment: 4 pages, 1 table, 1 figure, Contribution to the Proceedings of the 15th Particles and Nuclei International Conference (PANIC 99), Uppsala, Sweden, June 10-16, 199

    Polarization Diffusion from Spacetime Uncertainty

    Full text link
    A model of Lorentz invariant random fluctuations in photon polarization is presented. The effects are frequency dependent and affect the polarization of photons as they propagate through space. We test for this effect by confronting the model with the latest measurements of polarization of Cosmic Microwave Background (CMB) photons.Comment: 4 pages, 1 figur

    An Anomalous Component of Galactic Emission

    Get PDF
    We present results from microwave background observations at the Owens Valley Radio Observatory. These observations, at 14.5 and 32 GHz, are designed to detect intrinsic anisotropy on scales of 7'. After point source removal, we detect significant emission with temperature spectral index beta ~ -2 towards the North Celestial Pole (NCP). Comparison of our data with the IRAS 100 micron map of the same fields reveals a strong correlation between this emission and the infrared dust emission. From the lack of detectable H-alpha emission, we conclude that the signals are consistent either with flat-spectrum synchrotron radiation, or with free-free emission from T_e ~ 10^6 K gas, probably associated with a large HI feature known as the NCP Loop. Assuming beta = -2.2, our data indicate a conversion T_f/I_(100 micron) = 0.075*nu(GHz)^-2.2 K/(MJy/sr). The detection of such a component suggests that we should be cautious in any assumptions made regarding foregrounds when designing experiments to map the microwave background radiation.Comment: 6 pages, Latex, 3 Postscript figures, uses aas2pp4.st

    Preoperative systemic inflammation predicts postoperative infectious complications in patients undergoing curative resection for colorectal cancer

    Get PDF
    The presence of systemic inflammation before surgery, as evidenced by the glasgow prognostic score (mGPS), predicts poor long-term survival in colorectal cancer. The aim was to examine the relationship between the preoperative mGPS and the development of postoperative complications in patients undergoing potentially curative resection for colorectal cancer. Patients (n=455) who underwent potentially curative resections between 2003 and 2007 were assessed consecutively, and details were recorded in a database. The majority of patients presented for elective surgery (85%) were over the age of 65 years (70%), were male (58%), were deprived (53%), and had TNM stage I/II disease (61%), had preoperative haemoglobin (56%), white cell count (87%) and mGPS 0 (58%) in the normal range. After surgery, 86 (19%) patients developed a postoperative complication; 70 (81%) of which were infectious complications. On multivariate analysis, peritoneal soiling (P&#60;0.01), elevated preoperative white cell count (P&#60;0.05) and mGPS (P&#60;0.01) were independently associated with increased risk of developing a postoperative infection. In elective patients, only the mGPS (OR=1.75, 95% CI=1.17-2.63, P=0.007) was significantly associated with increased risk of developing a postoperative infection. Preoperative elevated mGPS predicts increased postoperative infectious complications in patients undergoing potentially curative resection for colorectal cancer

    Genomic repeat abundances contain phylogenetic signal

    Get PDF
    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution

    Overview of charm production at RHIC

    Full text link
    In this presentation, I discussed a) the charm total cross-section and its comparisons to measurements at other beam energies and pQCD calculations; b) the semileptonic decay of charmed hadrons and the sensitivity of non-photonic leptons to charm quark collective flow and freeze-out; c) semileptonic decayed electron spectrum at high transverse momentum, its comparison to FONLL in p+p and d+Au collisions, and heavy-quark energy loss in Au+Au collisions.Comment: 8 pages, 4 figures, overview talk at SQM2006: Strangeness in Quark Matter Los Angeles, CA, Mar. 26-31, 2006; minor text changes and references adde

    A Multi-Wavelength Mass Analysis of RCS2 J232727.6-020437, a ~3x1015^{15}M_{\odot} Galaxy Cluster at z=0.7

    Get PDF
    We present an initial study of the mass and evolutionary state of a massive and distant cluster, RCS2 J232727.6-020437. This cluster, at z=0.6986, is the richest cluster discovered in the RCS2 project. The mass measurements presented in this paper are derived from all possible mass proxies: X-ray measurements, weak-lensing shear, strong lensing, Sunyaev Zel'dovich effect decrement, the velocity distribution of cluster member galaxies, and galaxy richness. While each of these observables probe the mass of the cluster at a different radius, they all indicate that RCS2 J232727.6-020437 is among the most massive clusters at this redshift, with an estimated mass of M_200 ~3 x10^15 h^-1 Msun. In this paper, we demonstrate that the various observables are all reasonably consistent with each other to within their uncertainties. RCS2 J232727.6-020437 appears to be well relaxed -- with circular and concentric X-ray isophotes, with a cool core, and no indication of significant substructure in extensive galaxy velocity data.Comment: 19 pages, 15 figures, submitted to ApJ on March 5, 2015; in press. Manuscript revised following the referee revie

    HI Narrow Self-Absorption in Dark Clouds: Correlations with Molecular Gas and Implications for Cloud Evolution and Star Formation

    Full text link
    We present the results of a comparative study of HI narrow self-absorption (HINSA), OH, 13CO, and C18O in five dark clouds. The HINSA follows the distribution of the emission of the carbon monoxide isotopologues, and has a characteristic size close to that of 13CO. This confirms that the HINSA is produced by cold HI which is well mixed with molecular gas in well-shielded regions. The ratio of the atomic hydrogen density to total proton density for these sources is 5 to 27 x 10^{-4}. Using cloud temperatures and the density of HI, we set an upper limit to the cosmic ray ionization rate of 10^{-16} s^{-1}. Comparison of observed and modeled fractional HI abundances indicates ages for these clouds to be 10^{6.5} to 10^{7} yr. The low values of the HI density we have determined make it certain that the time scale for evolution from an atomic to an almost entirely molecular phase, must be a minimum of several million years. This clearly sets a lower limit to the overall time scale for star formation and the lifetime of molecular clouds

    The C-Band All-Sky Survey (C-BASS): Constraining diffuse Galactic radio emission in the North Celestial Pole region

    Get PDF
    The C-Band All-Sky Survey C-BASS is a high-sensitivity all-sky radio survey at an angular resolution of 45 arcmin and a frequency of 4.7 GHz. We present a total intensity 4.7 GHz map of the North Celestial Pole (NCP) region of sky, above declination +80 deg, which is limited by source confusion at a level of ~0.6 mK rms. We apply the template-fitting (cross-correlation) technique to WMAP and Planck data, using the C-BASS map as the synchrotron template, to investigate the contribution of diffuse foreground emission at frequencies ~20-40 GHz. We quantify the anomalous microwave emission (AME) that is correlated with far-infrared dust emission. The AME amplitude does not change significantly (<10%) when using the higher frequency C-BASS 4.7 GHz template instead of the traditional Haslam 408 MHz map as a tracer of synchrotron radiation. We measure template coefficients of 9.93±0.359.93\pm0.35 and 9.52±0.349.52\pm0.34 K per unit τ353\tau_{353} when using the Haslam and C-BASS synchrotron templates, respectively. The AME contributes 55±2μ55\pm2\,\muK rms at 22.8 GHz and accounts for ~60% of the total foreground emission. Our results suggest that a harder (flatter spectrum) component of synchrotron emission is not dominant at frequencies >5 GHz; the best-fitting synchrotron temperature spectral index is β=2.91±0.04\beta=-2.91\pm0.04 from 4.7 to 22.8 GHz and β=2.85±0.14\beta=-2.85\pm0.14 from 22.8 to 44.1 GHz. Free-free emission is weak, contributing ~7μ7\,\muK rms (~7%) at 22.8 GHz. The best explanation for the AME is still electric dipole emission from small spinning dust grains.Comment: 18 pages, 6 figures, version matches version accepted by MNRA

    Quarkonia production at RHIC

    Get PDF
    Quarkonia (J/Psi, Psi', Upsilon) production provides a sensitive probe of gluon distributions and their modification in nuclei; and is a leading probe of the hot-dense (deconfined) matter created in high-energy collisions of heavy ions. I will discuss our current understanding of the modification of gluon distributions in nuclei and other cold-nuclear-matter effects in the context of recent p-p and p(d)-A quarkonia measurements. Then I will review the latest results for nucleus-nucleus collisions from RHIC, and together with the baseline results from d-A and p-p collisions, discuss several alternative explanations for the observed suppressions and future prospects for distinguishing these different pictures.Comment: 8 pages including figures, writeup of talk given at Strange Quark Matter 2006, UCLA 26-31 March, 200
    corecore