568 research outputs found

    Large scale prop-fan structural design study. Volume 1: Initial concepts

    Get PDF
    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2

    Topological energy barrier for skyrmion lattice formation in MnSi

    Full text link
    We report the direct measurement of the topological skyrmion energy barrier through a hysteresis of the skyrmion lattice in the chiral magnet MnSi. Measurements were made using small-angle neutron scattering with a custom-built resistive coil to allow for high-precision minor hysteresis loops. The experimental data was analyzed using an adapted Preisach model to quantify the energy barrier for skyrmion formation and corroborated by the minimum-energy path analysis based on atomistic spin simulations. We reveal that the skyrmion lattice in MnSi forms from the conical phase progressively in small domains, each of which consisting of hundreds of skyrmions, and with an activation barrier of several eV.Comment: Final accepted versio

    Structural Transition Kinetics and Activated Behavior in the Superconducting Vortex Lattice

    Full text link
    Using small-angle neutron scattering, we investigated the behavior of a metastable vortex lattice state in MgB2 as it is driven towards equilibrium by an AC magnetic field. This shows an activated behavior, where the AC field amplitude and cycle count are equivalent to, respectively, an effective "temperature" and "time". The activation barrier increases as the metastable state is suppressed, corresponding to an aging of the vortex lattice. Furthermore, we find a cross-over from a partial to a complete suppression of metastable domains depending on the AC field amplitude, which may empirically be described by a single free parameter. This represents a novel kind of collective vortex behavior, most likely governed by the nucleation and growth of equilibrium vortex lattice domains.Comment: 5 pages plus 3 pages of supplemental materia

    Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight

    Get PDF
    The tail rotor of a helicopter with a single main rotor configuration can experience a significant reduction in thrust when the aircraft operates in crosswind flight. Brown’s vorticity transport model has been used to simulate a main rotor and tail rotor system translating at a sideslip angle that causes the tail rotor to interact with the main rotor tip vortices as they propagate downstream at the lateral extremities of the wake. The tail rotor is shown to exhibit a distinct directionally dependent mode during which tail rotors that are configured so that the blades travel forward at the top of the disk develop less thrust than tail rotors with the reverse sense of rotation. The range of flight speeds over which this mode exists is shown to vary considerably with the vertical location of the tail rotor. At low flight speeds, the directionally dependent mode occurs because the tail rotor is immersed within not only the downwash from the main rotor but also the rotational flow associated with clusters of largely disorganized vorticity within the main rotor wake. At higher flight speeds, however, the tail rotor is immersed within a coherent supervortex that strongly influences the velocity field surrounding the tail rotor

    Theoretical analysis of perching and hovering maneuvers

    Get PDF
    Unsteady aerodynamic phenomena are encountered in a large number of modern aerospace and non-aerospace applications. Leading edge vortices (LEVs) are of particular interest because of their large impact on the forces and performance. In rotorcraft applications, they cause large vibrations and torsional loads (dynamic stall), affecting the performance adversely. In insect flight however, they contribute positively by enabling high-lift flight. Identifying the conditions that result in LEV formation and modeling their effects on the flow is an important ongoing challenge. Perching (airfoil decelerates to rest) and hovering (zero freestream velocity) maneuvers are of special interest. In earlier work by the authors, a Leading Edge Suction Parameter (LESP) was developed to predict LEV formation for airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A point-vortex model based on this criterion is developed and results from the model are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the low-order model's performance in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to the other contributions to the velocity experienced by the leading edge region of the airfoil. Time instants of LEV formation, flow topologies and force coefficient histories for the various motion kinematics from the low-order model and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation and the point-vortex method is effective in modeling the flow development and forces on the airfoil. Typical run-times for the low-order method are between 30-40 seconds, making it a potentially convenient tool for control/design applications

    Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7

    Get PDF
    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described

    Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species

    Get PDF
    Tree mortality during global-change-type drought is usually attributed to xylem dysfunction, but as climate change increases the frequency of extreme heat events, it is necessary to better understand the interactive role of heat stress. We hypothesized that some drought-stressed plants paradoxically open stomata in heatwaves to prevent leaves from critically overheating. We experimentally imposed heat (>40°C) and drought stress onto 20 broadleaf evergreen tree/shrub species in a glasshouse study. Most well-watered plants avoided lethal overheating, but drought exacerbated thermal damage during heatwaves. Thermal safety margins (TSM) quantifying the difference between leaf surface temperature and leaf critical temperature, where photosynthesis is disrupted, identified species vulnerability to heatwaves. Several mechanisms contributed to high heat tolerance and avoidance of damaging leaf temperatures—small leaf size, low leaf osmotic potential, high leaf mass per area (i.e., thick, dense leaves), high transpirational capacity, and access to water. Water-stressed plants had smaller TSM, greater crown dieback, and a fundamentally different stomatal heatwave response relative to well-watered plants. On average, well-watered plants closed stomata and decreased stomatal conductance (gs) during the heatwave, but droughted plants did not. Plant species with low gs, either due to isohydric stomatal behavior under water deficit or inherently low transpirational capacity, opened stomata and increased gs under high temperatures. The current paradigm maintains that stomata close before hydraulic thresholds are surpassed, but our results suggest that isohydric species may dramatically increase gs (over sixfold increases) even past their leaf turgor loss point. By actively increasing water loss at high temperatures, plants can be driven toward mortality thresholds more rapidly than has been previously recognized. The inclusion of TSM and responses to heat stress could improve our ability to predict the vulnerability of different tree species to future droughts

    An examination of business occupier relocation decision making : distinguishing small and large firm behaviour

    Get PDF
    This paper explores how business occupiers decide whether and where to relocate. It captures the experience and behaviour of a range of sizes and types of business occupier and subjects their decision-making processes to detailed scrutiny. A linear three-stage decision model is used to sequence and structure interviews with individuals who have intimate involvement with the relocation of 28 firms and organizations in Tyne and Wear, in the north-east of England. The 'constant comparative' method is used to analyse the interview data, from which emerges 18 key concepts, comprising 51 characteristic components. Using an axial approach, these are organized into 10 cross-cutting themes that represent the main areas of consideration or influence on the thinking of the people involved in determining whether a firm or organization should relocate and, if so, where to. The resulting analysis finds that organizations adopt varying degrees of sophistication when making relocation decisions; small firms are more inclined to make decisions based on constrained information; larger organizations adopt a more complex approach. Regardless of firm size, key individuals exert considerable influence over the decision-making process and its outcome
    • 

    corecore