73 research outputs found

    The Massive Star-forming Regions Omnibus X-ray Catalog

    Full text link
    We present the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from {\em Chandra}/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc. Additionally, we show the morphology of the unresolved X-ray emission that remains after the catalogued X-ray point sources are excised from the ACIS data, in the context of \Spitzer\ and {\em WISE} observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, we have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics.Comment: Accepted to ApJS, March 3, 2014. 51 pages, 25 figure

    Rapid Circumstellar Disk Evolution and an Accelerating Star Formation Rate in the Infrared Dark Cloud M17 SWex

    Get PDF
    We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud G014.225−-00.506, which forms the central regions of a larger cloud complex known as the M17 southwest extension (M17 SWex). In addition to the rich population of protostars and young stellar objects with dusty circumstellar disks revealed by Spitzer Space Telescope archival data, we discover a population of X-ray-emitting, intermediate-mass pre--main-sequence stars (IMPS) that lack infrared excess emission from circumstellar disks. We model the infrared spectral energy distributions of this source population to measure its mass function and place new constraints on the inner dust disk destruction timescales for 2-8 M⊙M_{\odot} stars. We also place a lower limit on the star formation rate (SFR) and find that it is quite high (M˙≥0.007 M⊙\dot{M}\ge 0.007~M_{\odot} yr−1^{-1}), equivalent to several Orion Nebula Clusters in G14.225−-0.506 alone, and likely accelerating. The cloud complex has not produced a population of massive, O-type stars commensurate with its SFR. This absence of very massive (≥20 M⊙{\ge}20~M_{\odot}) stars suggests that either (1) M17 SWex is an example of a distributed mode of star formation that will produce a large OB association dominated by intermediate-mass stars but relatively few massive clusters, or (2) the massive cores are still in the process of accreting sufficient mass to form massive clusters hosting O stars.Comment: 29 pages, 9 figures, accepted to Ap

    The Diverse Stellar Populations of the W3 Star Forming Complex

    Full text link
    An 800 sq-arcmin mosaic image of the W3 star forming complex obtained with the Chandra X-ray Observatory gives a valuable new view of the spatial structure of its young stellar populations. The Chandra image reveals about 1300 faint X-ray sources, most of which are PMS stars in the cloud. Some, but not all, of the high-mass stars producing hypercompact and ultracompact H II (UCHII) regions are also seen, as reported in a previous study. The Chandra images reveal three dramatically different embedded stellar populations. The W3 Main cluster extends over 7 pc with about 900 X-ray stars in a nearly-spherical distribution centered on the well-studied UCHII regions and high-mass protostars. The cluster surrounding the prototypical UCHII region W3(OH) shows a much smaller (<0.6 pc), asymmetrical, and clumpy distribution of about 50 PMS stars. The massive star ionizing the W3 North H II region is completely isolated without any accompanying PMS stars. In W3 Main, the inferred ages of the widely distributed PMS stars are significantly older than the inferred ages of the central OB stars illuminating the UCHIIs. We suggest that different formation mechanisms are necessary to explain the diversity of the W3 stellar populations: cluster-wide gravitational collapse with delayed OB star formation in W3 Main, collect-and-collapse triggering by shock fronts in W3(OH), and a runaway O star or isolated massive star formation in W3 North.Comment: To appear in the Astrophysical Journal. 21 pages, 5 figures. A version with high-quality figures is available at http://www.astro.psu.edu/users/edf/W3_Chandra.pd

    Membership of the Orion Nebula Population from the Chandra Orion Ultradeep Project

    Get PDF
    The Chandra Orion Ultradeep project (COUP) observation described in a companion paper by Getman et al. provides an exceptionally deep X-ray survey of the Orion Nebula Cluster and associated embedded young stellar objects. Membership of the region is important for studies of the stellar IMF, cluster dynamics, and star formation. The COUP study detected 1616 X-ray sources. In this study we confirm cloud membership for 1315 stars, identify 16 probable foreground field stars having optical counterparts with discrepant proper motions, and classify the remaining 285 X-ray sources, of which 51 are lightly and 234 heavily obscured. The 51 lightly obscured sources without known counterparts fall into three groups. (i) Sixteen are likely new members of the Orion Nebula Cluster. (ii) Two with unusually soft and non-flaring X-ray emission appear to be associated with nebular shocks, and may be new examples of X-rays produced at the bow shocks of Herbig-Haro outflows. (iii) The remaining thirty three are very weak uncertain sources, possibly spurious. Out of 234 heavily absorbed sources without optical or near-infrared counterparts 75 COUP sources are likely new embedded cloud members (with membership for 42 confirmed by powerful X-ray flares), and the remaining 159 are likely extragalactic AGN seen through the molecular cloud, as argued by a careful simulation of the extragalactic background population. Finally, a few new binary companions to Orion stars may have been found, but most cases of proximate COUP sources can be attributed to chance superpositions in this crowded field.Comment: 49 pages, 6 figures, 5 tables. Accepted for publication in ApJS, special issue dedicated to Chandra Orion Ultradeep Project. A version with high quality figures can be found at http://www.astro.psu.edu/users/gkosta/COUP_Membership.pd
    • …
    corecore