2 research outputs found

    Advanced body composition assessment: from body mass index to body composition profiling

    Get PDF
    This paper gives a brief overview of common non-invasive techniques for body composition analysis and a more in-depth review of a body composition assessment method based on fatreferenced quantitative MRI. Earlier published studies of this method are summarized, and a previously unpublished validation study, based on 4753 subjects from the UK Biobank imaging cohort, comparing the quantitative MRI method with dualenergy X-ray absorptiometry (DXA) is presented. For whole-body measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRIs show excellent agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 and 4.6 per cent for fat (computed from AT) and LT, respectively, but the agreement was found significantly lower for visceral adipose tissue, with a CV of >20 per cent. The additional ability of MRI to also measure muscle volumes, muscle AT infiltration and ectopic fat, in combination with rapid scanning protocols and efficient image analysis tools, makes quantitative MRI a powerful tool for advanced body composition assessment

    Body Composition Profiling in the UK Biobank Imaging Study

    Get PDF
    Objective To investigate the value of imaging-based multivariable body composition profiling by describing its association with coronary heart disease (CHD), type 2 diabetes (T2D), and metabolic health on individual and population levels. Methods The first 6,021 participants scanned by UK Biobank were included. Body composition profiles (BCPs) were calculated including abdominal subcutaneous adipose tissue, visceral adipose tissue (VAT), thigh muscle volume, liver fat, and muscle fat infiltration (MFI), determined using magnetic resonance imaging. Associations between BCP and metabolic status were investigated using matching procedures and multivariable statistical modelling. Results Matched control analysis showed higher VAT and MFI was associated with CHD and T2D (p<0.001). Higher liver fat was associated with T2D (p<0.001) and lower liver fat with CHD (p<0.05), matching on VAT. Multivariable modelling showed lower VAT and MFI was associated with metabolic health (p<0.001), liver fat was non-significant. Associations remained significant adjusting for sex, age, BMI, alcohol, smoking, and physical activity. Conclusions Body composition profiling enabled an intuitive visualization of body composition and showed the complexity of associations between fat distribution and metabolic status, stressing the importance of a multivariable approach. Different diseases were linked to different BCPs, which could not be described by a single fat compartment alone
    corecore