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ABSTRACT 
This paper gives a brief overview of common non-invasive techniques for body composition analysis and a 
more in-depth review of a body composition assessment method based on fat-referenced quantitative 
magnetic resonance imaging (MRI). Earlier published studies of this method are summarized, and a previously 
un-published validation study, based on 4.753 subjects from the UK Biobank imaging cohort, comparing the 
quantitative MRI method with dual-energy x-ray absorptiometry (DXA) is presented. For whole-body 
measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRI show excellent 
agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 % and 4.6 % for fat 
(computed from AT) and lean tissue respectively, but the agreement was found significantly lower for visceral 
adipose tissue, with a CV of more than 20 %. The additional ability of MRI to also measure muscle volumes, 
muscle AT infiltration and ectopic fat in combination with rapid scanning protocols and efficient image analysis 
tools make quantitative MRI a powerful tool for advanced body composition assessment. 

INTRODUCTION 
The human body – as well as the body of every other animal – is mainly composed of four molecular-level 
components; water, fat, proteins and minerals, usually in that order of decreasing amounts[1]. The substance 
that has attracted the most attention, from laypeople to medical professionals, is fat. This is, of course, 
motivated by the well-established fact that an excessive amount of body fat is related to increased morbidity 
and mortality. But also because adipose tissue (AT) is, by far, the most varying compartment – between 
individuals, but also within an individual over time. The most widely used way to estimate body fat is the body 
mass index (BMI) – body weight normalized by height squared (kg/m2). Being a very simple and inexpensive 
method, it is the basis for WHO's definition of overweight (25 ≤ BMI < 30) and obesity (BMI ≥ 30).  However, for 
a given BMI, the body-fat percentage changes with age, and the rate of this change is different depending on 
sex, ethnicity and individual differences[2]. And while BMI correlates with fat accumulation and metabolic 
health in large populations, it is insensitive to the actual distribution of body fat[3].  

When comparing methods for body composition analysis, it is important to distinguish fat (triglyceride) from 
AT[4], which contains approximately 80 % fat, the rest being water, protein and minerals[5]. While most of the 
body fat is stored in AT, fat is also present in organs such as liver and skeletal muscle. Today, it is well known 
that the metabolic risk related to fat accumulation is strongly dependent on its distribution. Central obesity 
and, in particular, ectopic fat accumulation, are important metabolic risk factors[6-8]. Large amounts of visceral 
AT (VAT) are related to increased cardiac risk[8, 9], type 2 diabetes[10, 11], liver disease[12] and cancer[13, 14]. 
High levels of liver fat increase the risk for liver disease and type 2 diabetes[15], and increased muscle fat has 
been associated with increased risk for insulin resistance and type 2 diabetes[16] and reduced mobility[17]. 
While there are other anthropometric measures, such as waist circumference and waist-to-hip ratio, that more 
strongly correlate with metabolic risk[18, 19], it is now well recognized that BMI and other anthropometric 
surrogate measures are poor predictors for individual fat distribution and metabolic risk[3, 20, 21].  

Besides fat, acting as the body's long-term energy storage, skeletal muscles are of great interest to study, and 
the balance between the energy-consuming muscles and the energy-storing fat compartments is, of course, 
highly relevant in order to understand the metabolic balance of the body. Cachexia, involuntary loss of body 
weight, usually with disproportionate muscle wasting, is a life-threatening condition, often related to the 
progression of an underlying serious disease (e.g., cancer[22]). In cancer, cachexia is defined as weight loss of 
more than 5% over 6 months, BMI < 20 kg/m2 or appendicular muscle mass normalized by body height squared 
of less than 7.26 kg/m2 or 5.45 kg/m2 for males and females respectively[23]. Sarcopenia, which can be related 
to cachexia, but is also associated with ageing, is often defined as reduced physical performance following loss 
of muscle mass, usually accompanied by increased fat infiltration of the muscles[24]. When diagnosing 
sarcopenia, muscle strength tests combined with muscle volume measurements are needed[25]. Furthermore, 
Willis et al. showed that muscle pathology progression over one year could be detected by quantitative MRI 
but not by assessing muscle strength or function[26]. These examples illustrate the need for more 
sophisticated body composition analysis tools that go beyond simple anthropometric measures. 

Since the early part of the last century, scientists have tried to determine the body composition in different 
ways, with a wide range of difference physical principles and devices, and using different models and 
assumptions. Today, local in-vivo measurements of different fat depots and fat infiltration in organs can be 
made using tomographic imaging techniques such as computed tomography (CT) and magnetic resonance 
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imaging (MRI) that were not even invented when the first scientific studies on body composition were 
published. These techniques are now recognized as golden standard for body composition analysis[25, 27].  

The purpose of this paper is to give a brief introduction to the most commonly used methods for body 
composition analysis and a review of an MRI-based body composition analysis technique, comparing its 
performance to other methods. This includes a previously unpublished validation study of the agreement 
between this method and dual-energy X-ray absorptiometry (DXA). 

TECHNOLOGY OVERVIEW 
A number of different techniques for body composition assessment have been developed, from very simple 
indirect measures such as waist-to-hip ratio and calipers to sophisticated direct volumetric measurements 
based on 3-dimensional imaging techniques. There are also a range of invasive or in-vitro methods for body 
composition analysis such as inhalation or injection of water- or fat-accumulating agents, or dissection and 
chemical analysis of cadavers. This overview will, however, focus solely on non-invasive in-vivo measurement 
techniques. 

Hydrostatic Weighing (Densitometry) 
Hydrostatic weighing (under-water-weighing), or densitometry, is based on Archimedes' principle. The 
difference of the body weight in air and in water is used to compute the body's density. Assuming a two-
component model with different densities for fat mass and fat-free mass and correcting for the air volume in 
the lungs, the total body fat percentage can be estimated. Obviously, this technique cannot give any 
measurements of the distribution of AT or LT.  

Air Displacement Plethysmography (ADP) 
ADP is perhaps better known under its commercial brand name BOD POD (Life Measurement Inc., Concord, 
CA). Similar to hydrostatic weighing, ADP measures the overall body density and hence total body fat and lean 
tissue (LT) but not their distributions. By putting the body in an enclosed chamber and changing the chamber's 
volume, the volume of the displaced air (i.e., the volume of the body) can be determined from the changes in 
air pressure. Since ADP is based on the same two-component model as hydrostatic weighing, it is also affected 
by the same confounders, mainly variations in bone mineral content and hydration. Due to the limitations of 
the two-component model used in densitometry and ADP, a four-component (4C) model is often 
recommended[28, 29]. In addition to fat and LT, the 4C model also takes bone mineral content (BMC) and total 
body water (TBW) into account. However, these two additional components have to be measured by other 
techniques (e.g. dual-energy X-ray absorptiometry for the BMC, and deuterium oxide dilution for TBW[30]) The 
repeatability (coefficient of variation) of ADP for body fat has been reported to be between 1.7 and 4.5 % when 
measured within one day[31]. Obviously, ADP, as well as hydrostatic weighing, is limited to gross body 
composition analysis, not making any estimates of regional fat or muscles. 

Bioelectrical Impedance Analysis (BIA) 
BIA uses the electrical properties of the body to estimate the total body water and from that, the body fat 
mass[32, 33]. The body is modelled as 5 cylindrical LT compartments; the trunk and the four limbs, while fat is 
considered to be an insulator. The impedance is assumed to be proportional to the height and inversely 
proportional to the cross-sectional area of each compartment, and the electrical equivalent is a resistor (extra-
cellular water) in parallel with a capacitor and a resistor in series (intra-cellular water). The model of uniform 
distribution of fat and water fits better to the extremities than the trunk[34], and while there are BIA 
measurements that correlate well with total abdominal AT, BIA cannot be used for measuring VAT[35]. 
Potential error sources are variations in limb length (usually estimated from body height), recent physical 
activity, nutrition status, tissue temperature and hydration, blood chemistry, ovulation, and electrode 
placement[32]. BIA requires different model parameters to be used depending on age, gender, level of physical 
activity, amount of body fat and ethnicity, in order to be reliable[36, 37].  
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Dual-energy X-ray Absorptiometry (DXA) 
DXA is a two-dimensional imaging technique that uses X-rays with two different energies. The attenuation of 
an X-ray is dependent on the thickness of the tissue and the tissue's attenuation coefficient, which is 
dependent on the X-ray energy. By using two different energy levels, the images can be separated into two 
components (e.g., bone and soft tissue). DXA is mainly used for bone mineral density measurements, where it 
is considered as the gold standard[38], but it can also be used to estimate total and regional body fat and LT 
mass. Pixels, where the ratio between attenuations of the two energies falls below a certain threshold, are 
classified as soft tissue (i.e., without bone) and in those pixels, the attenuation is linearly dependent on the fat 
fraction of the soft tissue. Pixels above the threshold contain a mixture of bone and soft tissue, and there the 
soft tissue properties need to be interpolated from surrounding soft tissue pixels[39]. Approximately one third 
of the pixels of the projected body contains bone[40]. 

DXA has been found to be more accurate than density-based methods for estimating total body fat[41]. A 
possible confounder is that the DXA analysis assumes a constant hydration of lean soft tissue, which is not 
always true as hydration varies with age, gender and disease[42]. Excellent repeatability (CV) in the range 1 – 2 
% for body fat and 0.5 – 2 % for LT has been reported for DXA. 

Since DXA only gives a two-dimensional (coronal) projection, it is not possible to obtain direct compartmental 
volumetric measurements, so regional volume estimates are obtained indirectly using anatomical models. For 
example, VAT and parts of the subcutaneous adipose tissue (SAT), are mixed and cannot be separated in the 
DXA image. The distribution between VAT and SAT then needs to be estimated from an anatomical model 
predicting the SAT thickness. Furthermore, the physical properties of the technology do not allow for 
measurements of ectopic fat in organs such as liver fat or muscle fat infiltration. However, due to its ability to 
estimate regional fat and measure LT, in combination with relatively high availability, DXA has been used for 
body composition analysis in a wide range of clinical applications[43]. 

Computed Tomography (CT) 
CT gives a three-dimensional high-resolution image volume of the complete or selected parts of the body, 
computed from a large number of X-ray projections of the body from different angles. The known differences 
in attenuations of X-rays between lean soft tissue and AT can then be used to separate these tissues, as well as 
to determine mixtures between them. As opposed to the previously described techniques, CT can accurately 
determine fat in skeletal muscle tissue[16] and in the liver[44]. It is, however, significantly less accurate for liver 
fat below 5 % which limits its use to diagnose low-grade steatosis[44]. Being a three-dimensional imaging 
technique, CT has the potential of giving direct volumetric measurements of organs and different AT depots. In 
practice, however, CT-based body composition analysis is in most cases limited to two-dimensional analysis of 
one or a limited number of axial slices of the body, leading to the utilization of the area measured as a proxy 
for the volume. There are two reasons for this limitation: First, it is important to keep the part of the body 
being scanned to a minimum in order to minimize the ionizing radiation dose[45]. This is particularly important 
in the ethical considerations of research studies on healthy subjects. Secondly, manual segmentation of 
different compartments in the images is a very labor intensive, which can be reduced by limiting the analysis to 
a few slices rather than a complete three-dimensional volume. This approach, however, limits its precision, 
since the exact locations of slices, in relation to internal organs, cannot be determined a priory, and will 
therefor vary between scans. Nevertheless, CT, together with MRI, are today considered the gold standards for 
body composition analysis, in particular regional. 

Magnetic Resonance Imaging (MRI) 
MRI uses the different magnetic properties of the nuclei of certain chemical elements (normally hydrogen in 
water and fat) in the cells to produce images of soft tissue in the body. A number of MRI-based methods for 
quantification of AT (see e.g. the review by Hu et al[46]) and muscles[47-52] have been developed and 
implemented in the past. 

By using so-called "quantitative fat-water imaging", precise measurements of regional AT and LT, as well as 
diffuse fat infiltration in other organs, can be obtained. The basis for quantitative fat-water imaging is fat-water 
separated, or Dixon, imaging[53], where the different magnetic resonance frequencies of protons in fat and 
water are utilized for separating the two signals into a fat image and a water image. Due to a number of 
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undeterminable factors affecting the MR signal, an MR image is not calibrated on an absolute scale and 
therefore not quantitative in itself. But by using different post-processing techniques, the image can be 
calibrated to quantitatively measure fat or AT. Examples of such methods are proton density fat fraction 
(PDFF)[54] measuring the fraction of fat in MR-visible soft tissue, and fat-referenced MRI[55-57] measuring the 
amount of AT in each voxel.  

As opposed to CT and DXA, MRI does not use ionizing radiation, which enables true volumetric three-
dimensional imaging even in healthy volunteers and infants. Still, many studies using MRI for body composition 
analysis have used one or a limited set of two-dimensional slices, mostly due to the lack of efficient image 
analysis tools for handling three-dimensional image segmentation. However, since there is no ionizing radiation 
limiting the image acquisition, the slices can be selected from a complete image volume, thereby reducing the 
uncertainty in their locations. Still, using a sparse set of slices as a proxy for the complete volume will inevitably 
negatively affect accuracy and precision as only a fraction of the data is used. It has, for example been shown 
that single-slice MRI is poor at predicting VAT and SAT changes during weight loss[58, 59]. 

BODY COMPOSITION PROFILING USING FAT-REFERENCED MRI 
Body composition profiling implies the simultaneous collection and analysis of a number of body-composition 
parameters, including subcutaneous and visceral AT, ectopic fat such as liver and skeletal muscle fat and 
muscle volumes. Fat-referenced MRI is a methodology that enables all such measurements in one single rapid 
examination. This section gives a brief introduction to body composition profiling using fat-referenced MRI, 
together with a review of published validation results of the method. Finally, a previously unpublished 
validation study of the agreement between this method and DXA for measurements of body fat/AT, body LT 
and VAT, is presented. 

The body composition profiling methodology combines fat-referenced MRI with automated image 
segmentation of different compartments, and was first described by Dahlqvist Leinhard et al. 2008[55]. 
Different aspects of the method have been further described in other publications[47, 60-62]. The two key 
features of this method are that it produces quantitative fat-referenced images and that it uses a supervised 
automated segmentation tool.  

In a quantitative fat-referenced image, the value in each image volume element (voxel) represents the amount 
of fat in that voxel in relation to the amount of fat in pure AT. Hence, a voxel in pure AT has a value of one and 
a voxel without any fat has the value zero. This means that the following can be measured: The total amount of 
AT in any given region by summation of the voxel values in that region, AT-free volume by removal of amount of 
AT from volume measurements of regional LT (e.g. muscles), and fractions of fat in specific internal organs, such 
as the liver. 
The supervised automated segmentation tool enables an efficient way of segmenting different AT 
compartments, as well as different muscle groups, reducing the manual work to a few minutes, rather than 
hours, for analyzing a whole-body data set. Anatomical compartments, such as the visceral compartment and 
different muscle groups, are automatically segmented using predefined anatomical atlases and the operator 
can then adjust the segmentations if needed.  

See Appendix 1 for a summary of how fat-referenced MRI is implemented in AMRA® Profiler (AMRA Medical 
AB, Linköping, Sweden), which is the tool for body composition profiling that was used in the validation studies 
of fat-referenced MRI. 

Precision and Accuracy 
In a previous study[61], the accuracy of body composition profiling using fat-referenced MRI, in terms of 
agreement with manual quantification of T1-weighted MR images, was evaluated on 23 (11 female, 12 male) 
subjects with an average BMI of 31.7 ± 5.1 kg/m2 (range 22–46 kg/m2); age 36–66 years. There was no 
significant difference in the measured amount of VAT (4.73 ± 1.99 versus 4.73 ± 1.75 L, p = 0.97). Furthermore, 
the agreement between the methods was excellent for both VAT (95 % LoA -1.06 – 1.07 L) and ASAT (-0.36 – 
1.60 L).  However, a very small yet statistically significant difference in ASAT was observed (10.39 ± 5.38 versus 
9.78 ± 5.36 L, p < 0.001). Clearly this small difference has no clinical significance.  

Test-retest repeatability and agreement with manual quantification for VAT was evaluated by Newman et al. 
(Newman 2016). The study included 30 subjects with five subjects from each gender for each of the following 
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categories of BMI: 18 – 25 kg/m2, 25 – 30 kg/m2 and > 30 kg/m2.  Each subject was scanned twice with at least 
20 minutes interval, during which the subject left the scanner room. There was no significant difference 
between the evaluated method and manual quantification of VAT (p = 0.73). Bland-Altman analysis of the test-
retest repeatability showed a bias of -0.04 L (95 % LoA -0.12 – 0.13 L) for VAT and 0.05 L (95 % LoA -0.55 – 0.64 
L) for ASAT. The CV was 1.80 % for VAT and 2.98 % for ASAT using the method above. The CV for manual 
quantification of VAT was 6.33 % as a comparison. 

Middleton et al. evaluated the accuracy and repeatability of VAT, ASAT and thigh muscle quantification by 
comparing with manual segmentation on 20 subjects[63]. Due to the laborious work with manual 
segmentation, 15 two-dimensional axial slices were manually segmented in the abdominal region for VAT and 
ASAT and 5 slices over the thigh muscles. For repeatability assessment, the subjects were scanned three times, 
with the subject remaining in the same position on the scan table between scan 1 and 2 and with the subject 
removed from the table between scan 2 and 3. The intra-examination (scan 1–2) repeatability test obtained a 
CV of 3.3 % for VAT, 2.2 % for ASAT and 1.5 % for total thigh muscle volume. For the inter-examination test 
(scan 2–3), the CVs were 3.6 %, 2. 6 % and 1.5 % for VAT, ASAT and thigh muscle volume respectively. Good 
agreement with the manual measurements in the 20 slices was observed for all measurements. Neither the 
slopes nor the intercepts of the regression lines were significantly different from those of the identity lines.  

Test-retest repeatability of muscle quantification of left and right abdominal muscles, left and right, anterior 
and posterior thigh muscles and left and right lower limb muscles, as well as accuracy of lower leg muscle 
quantification were evaluated by Thomas et al[65]. comparing the method above with manual segmentation. 
The study included 15 subjects of each gender, ranging from normal weight to obese.  Each subject was 
scanned twice with at least 20 minutes interval, during which the subject left the scanner room. The intra-class 
correlation (ICC) between the first and second scan was almost perfect (between 0.99 and 1.0) for all muscle 
groups. The 95 % LoA ranged from -0.04 – 0.02 L for the posterior thigh muscles to -0.15 – 0.08 L for the left 
lower limb. The lowest accuracy for the lower limbs was a bias of -0.08 L with 95 % LoA of -0.25 – 0.09 L. 

Test-retest repeatability of measurements of VAT and ASAT volumes and volumes and fat infiltration of left and 
right posterior and anterior thigh muscles, lower leg muscles and abdominal muscles were evaluated by West 
et al. on 36 sedentary postmenopausal women[64]. Each subject was scanned twice, and the subjects were 
removed from the scanner room between the acquisitions. The intra-examination CV was 1.54 % for VAT, 1.06 
% for ASAT, 0.8 % – 1.9 % for volumes of muscle groups (thigh, lower leg, and abdomen), and 2.3 % – 7.0 % for 
individual muscle volumes. The 95 % LoA was -0.13 – 0.10 L for VAT, -0.38 – 0.29 L for ASAT. The limits of 
agreement for liver PDFF was within ± 1.9 % and for muscle fat infiltration, it was within ± 2.06 % for muscle 
groups and within ± 5.13 % for individual muscles. 

The method's reproducibility of fat-free muscle volume quantification between 1.5 T and 3 T MR scanners, as 
well as the agreement with manual segmentation, was investigated on 11 different muscle groups[47]. The ICC 
between the automated method and manual measurements was at least 0.97 for all muscle groups except in 
the arms. Except for the arms, the ICC between 1.5 T and 3 T data ranged from 0.97 (left lower leg) to 1.00 (left 
posterior thigh) with a mean difference volume ranging from 0.39 L (95 % LoA 0.01 – 0.77 L) (left abdomen) to 
0.0 L (95 % LoA -0.10 – 0.09 L) (right lower leg). The muscles of the arms had worse accuracy and 
reproducibility due to difficulties to include the arms in the field of view.  

Agreement with ADP 
A previous study[66] compared AT measured using fat-referenced MRI with total body fat measured by ADP. 
The intra-class correlation was 0.984. After converting the ADP body fat measures to AT volume (assuming that 
most of the fat resided in AT and a density of 0.9 kg/L for AT), a Bland-Altman analysis showed that ADP 
underestimated AT by 0.78 L on average, but the bias was strongly dependent on the level of adiposity with 
significant underestimation for lean subjects and significant overestimation for subjects with higher amounts of 
AT. Similar bias dependence has been observed when ADP has been compared with DXA[31] and MRI[67]. 

Agreement with BIA 
Ulbrich et al[68]. investigated the agreement between fat-referenced MRI and BIA on 80 subjects between 20 
and 62 years with a BMI range from 17.5 to 26.2 kg/m2. The linear correlation between body fat mass 
measured by BIA and AT volume measured by MRI was 0.75 and 0.81 for females and males respectively. The 
total AT measured by MRI was converted to total fat mass (again assuming that most of the fat resided in AT 
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and using a constant density of 0.94 kg/L). Compared to MRI, the BIA underestimated the total fat with 
approximately 5 kg (± 7 kg LoA) on average, this despite the fact that the MRI-based measurements of total 
body fat excluded the arms and lower legs. The highest linear correlation found between BIA and MRI-derived 
measures was 0.75 and 0.81 for females and males respectively. These correlations were found between BIA-
derived body mass percentage and the MRI-derived "total AT index" (total AT divided by body height squared). 

Agreement with DXA 

Methods and Materials 
The agreement between DXA and the fat-referenced MRI technique was assessed using data from the UK 
Biobank study[69], approved by the North West Multicenter Research Ethics Committee (MREC), UK, and with 
written informed consent obtained from all subjects prior to study entry. The age range for inclusion was 40–
69 years of age. For the present analysis, participants were selected, out of the first 6,214 scanned, who had 
both DXA and MRI scans. One subject with obviously erroneous DXA values (2.7 kg total fat and 6.8 kg LT) was 
excluded, yielding a total 4,753 subjects (2,502 females and 2,251 males). All included MRI images were 
analyzable for VAT, ASAT and both thigh muscles according the pre-defined quality criteria[62]. The BMI range 
was 16.4 – 54.3 with a mean of 26.2 kg/m2.  

The MR images were acquired using a Siemens Aera 1.5 T scanner (Syngo MR D13) (Siemens, Erlangen, 
Germany) with the dual-echo Dixon Vibe protocol, covering neck to knees as previously described[62]. The MR 
images were analyzed using AMRA® Profiler. The body AT and LT were measured from the bottom of the thigh 
muscles to level of the top of vertebrae T9 (Figure 2). The LT was defined as the volume of soft tissue 
subtracted by the volume of AT[47]. 

Whole-body DXA data were acquired using a GE-Lunar iDXA (GE Healthcare, Madison, WI) with the subjects in 
supine position[70]. The images were analyzed using the GE enCORE software by the radiographer at, or soon 
after, the scan. The GE iDXA estimates VAT within an automatically segmented region with the lower border at 
the top of the iliac crest and its height is set to 20% of the distance from the top of the iliac crest to the base of 
the skull[71]. 

Since the DXA and MRI analyses measure different entities (fat and LT mass vs. AT and LT volume respectively) 
and they do not cover the same part of the body, a linear model was estimated by linear regression between 
the MRI and DXA measurements using a training data set of 2,376 randomly selected subjects. The remaining 
2,377 subjects were then used for estimating the agreement between the techniques after linear 
transformation using the linear model (i.e., validating the linear model). The MRI-based measurements (L) were 
transformed to predict the DXA measurements (kg) using the linear regression coefficients from the training 
data, and a Bland-Altman analysis was performed to investigate the agreement between MRI- and DXA-derived 
measurements in the validation data. To investigate the agreement between DXA and MRI-derived VAT 
measurements, a linear model was estimated between the DXA and MRI measurements. Of the 4,669 subjects 
with available DXA VAT measurements, 2,334 cases were used to for estimate the model and the remaining 
2,335 subjects were used to validate the agreement between VAT measured by MRI and the transformed DXA 
measurements using Bland-Altman analysis. 

 

Results 
The linear regression between MRI and DXA was 1.23 x - 0.12 (kg/L) for body fat/AT and 1.88 x + 1.82 (kg/L) for 
body LT. The linear correlation coefficient, r, between DXA and the transformed MRI measurements was 0.99 
for body fat and 0.97 for LT. The 95 % limits of agreement from the Bland-Altman analysis were -2.25 – 2.31 kg 
for fat and -4.33 – 4.31 kg for LT (Figure 3). The prediction error standard deviation relative to the mean, 
(coefficient of variation, CV), was 4.5 % for body fat and 4.6% for LT. The correlation between VAT measured by 
MRI and VAT as predicted by DXA was 0.97 and the limits of agreement were -1.02 – 1.05 L, with CV = 21 % 
(Figure 4). 
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DISCUSSION 
Densitometry, including ADP, shows relatively good precision, and high correlation with MRI-based 
measurements of whole-body AT, but with a significant volume-dependent bias. And since these methods only 
measure the volume or density of the body, they cannot be used for regional measurements and body 
composition profiling.  

BIA is highly available and its relatively low cost is an advantage which also makes it useful for consumer 
products. Furthermore, it can differentiate intra-cellular water from extra-cellular water, which is a unique 
capability of BIA. BIA can also, in principle, be used for regional measurements, but it is severely limited when it 
comes to measuring VAT or ectopic fat in internal organs. 

DXA techniques have shown good accuracy, when evaluated against MRI for whole-body measurements, and 
very good repeatability. The prediction of whole body fat and LT from MRI agrees well with DXA after a linear 
transformation, but less so for VAT. While the correlation between DXA and MRI-derived VAT was high (r = 
0.97), the agreement after a linear transformation was, however, much lower than for total body fat and body 
LT, with a CV above 20 %. The high linear correlation, despite a modest agreement, can be explained by the 
very wide range of measured VAT volumes, ranging from almost zero to over 14 L. The CV for VAT is in line with 
the results by Kaul et al. with a CV of 15.6 % for females and 25.9 % for males when comparing the same DXA 
model with CT[71]. Park et al. found a linear correlation of 0.85 between VAT measured by DXA and MRI in a 
study including 90 non-obese men[72]. However, Kamel et al. found that the correlation was much lower (r = 
0.46) for obese men[73]. The fact that the agreement is lower for obese subjects can also be observed in Figure 
3 where the prediction error increases with increased VAT volume. Silver et al. found an excellent correlation 
without significant bias between fat-water MRI and DXA for "gross body adipose tissue" but with a significant 
negative bias (MRI - DXA) for "total trunk adipose tissue" as well as total and trunk LT[74]. Interestingly, for 
DXA, the lowest precision is for fat in the arms, with reported CV up to 11%[75]. This is the same compartment 
that is difficult to measure with MRI due to signal loss in the outer parts of the field of view. A strength with 
DXA, compared to MRI, is the simultaneous assessment of bone mineral density and mass.  

When comparing different technologies, both accuracy and precision are important. Accuracy, however, can be 
rather difficult to compare between technologies, for several reasons. First, there is no ground truth available. 
Even though there is a growing consensus that tomographic methods are the gold standard that can be used to 
assess accuracy for other methods, they differ between themselves, and are difficult to compare in terms of 
accuracy. Using physical phantoms is one way to assess accuracy, but they miss the difficulties caused by 
anatomical variations that we know can lead to different measurement errors. Automated tomographic 
imaging methods can be evaluated against manual methods, but this addresses only one of several important 
components in the measurement system – the segmentation of different compartments. Second, not all 
methods measure the same thing, so even if two technologies correlate strongly, there may be a significant 
bias if they measure different physical entities. For example, AT is not equivalent to fat – besides fat AT also 
contains water, protein and minerals. When comparing a method that measures AT in volume units, such as 
MRI, to a method that measures fat in weight units (e.g., DXA), we have to convert one unit to the other using 
a density that is assumed to be constant, which again may not be always accurate.  

Although this review has not focused on measurements of ectopic fat, this is an important component in body 
composition profiling, especially for understanding metabolic status and assessing risk. Among the techniques 
discussed here, CT and quantitative MRI are the only methods that can quantify local diffuse infiltration of AT 
and ectopic fat. (Non-invasive measurements of ectopic fat, in particular liver fat, is commonly done by MR 
spectroscopy (MRS), but since MRS only measures local substance concentrations and not absolute amounts of 
fat, AT or LT, this technology was not included in this study.) While it is possible – and sometimes necessary – 
to use different equipment for different measurements in a study, it is often desirable to keep the number of 
different examinations and modalities to a minimum in order to optimize the work flow. By using quantitative 
MRI, or CT if the radiation dose is not a concern, a large number of metabolically relevant body composition 
parameters can be measured with high accuracy and precision in a single examination. 

A comparison of the capabilities of different measurements of the techniques discussed above is summarized 
in Table 1. 
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  ADP BIA DXA CT MRI 
Total fat Yes Yes Yes Yes Yes 

Total lean tissue Yes Yes Yes Yes Yes 

VAT No No Approximate Yes Yes 

Volume of individual muscles No No No Yes Yes 

Diffuse fat infiltration No No No Yes Yes 

Ionizing radiation No No Yes (low) Yes No 
 

Table 1. Comparison of the capabilities of different techniques for body composition analysis. 

CONCLUSION 
There are several methods available that can measure whole-body AT or fat and LT. In terms of precision and 
accuracy, DXA and MRI are comparable, as they show excellent agreement after a linear transformation. 
However, the agreement is much lower for compartmental measurements such as VAT. Moreover, MRI gives 
access to accurate and direct measurements of diffuse infiltration of AT in muscles and ectopic fat (e.g., liver 
fat). Rapid MRI scanning protocols in combination with efficient image analysis methods have promoted MRI to 
a competitive option for advanced body composition assessment, thus enabling a more complete description 
of a person's body composition profile from a single examination. 
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Figure 1. Example of segmentation of abdominal subcutaneous AT (ASAT), visceral AT (VAT) and 10 muscle 
groups from fat-water separated MRI using fat-referenced MRI and multi-atlas image segmentation. To the left 
is the fat image with ASAT (blue) and VAT (red), and to the right is the water image with the different muscle 
groups colored. (Reproduced with permission from AMRA Medical AB.) 
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Figure 2. A: The definition of lean and adipose tissue measured by MRI from the bottom of the thigh muscles to 
top of vertebrae T9 marked in blue color in the water (left) and fat (right) image. B: An example of a DXA image 
from the study cohort. (DXA image copyright UK Biobank. Reprinted with permission.) 
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Figure 3. Correlation plots (upper row) between DXA and corresponding measurement predicted from MRI 
using a linear transformation for body fat (left) and body LT (right). The bottom row shows Bland-Altman plots 
of the agreement between DXA and corresponding measures predicted from MRI. 

 

 
Figure 4. Correlation between VAT predicted by DXA and VAT measured by MRI (left) and Bland-Altman plot 
showing the agreement (liters) between the methods (right). 


