61 research outputs found

    FOXO-regulated transcription restricts overgrowth of Tsc mutant organs

    Get PDF
    FOXO is thought to function as a repressor of growth that is, in turn, inhibited by insulin signaling. However, inactivating mutations in Drosophila melanogaster FOXO result in viable flies of normal size, which raises a question over the involvement of FOXO in growth regulation. Previously, a growth-suppressive role for FOXO under conditions of increased target of rapamycin (TOR) pathway activity was described. Here, we further characterize this phenomenon. We show that tuberous sclerosis complex 1 mutations cause increased FOXO levels, resulting in elevated expression of FOXO-regulated genes, some of which are known to antagonize growth-promoting pathways. Analogous transcriptional changes are observed in mammalian cells, which implies that FOXO attenuates TOR-driven growth in diverse species

    A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (SCC) remains among the most aggressive human cancers. Tumour progression and aggressiveness in SCC are largely driven by tumour-propagating cells (TPCs). Aerobic glycolysis, also known as the Warburg effect, is a characteristic of many cancers; however, whether this adaptation is functionally important in SCC, and at which stage, remains poorly understood. Here, we show that the NAD+-dependent histone deacetylase sirtuin 6 is a robust tumour suppressor in SCC, acting as a modulator of glycolysis in these tumours. Remarkably, rather than a late adaptation, we find enhanced glycolysis specifically in TPCs. More importantly, using single-cell RNA sequencing of TPCs, we identify a subset of TPCs with higher glycolysis and enhanced pentose phosphate pathway and glutathione metabolism, characteristics that are strongly associated with a better antioxidant response. Together, our studies uncover enhanced glycolysis as a main driver in SCC, and, more importantly, identify a subset of TPCs as the cell of origin for the Warburg effect, defining metabolism as a key feature of intra-tumour heterogeneity

    PI3K Inhibition Impairs BRCA1/2 Expression and Sensitizes BRCA-Proficient Triple-Negative Breast Cancer to PARP Inhibition

    Get PDF
    PARP inhibitors are active in tumors with defects in DNA homologous recombination (HR) due to BRCA1/2 mutations. The phosphoinositide 3-kinase (PI3K) signaling pathway preserves HR steady state. We hypothesized that in BRCA-proficient triple-negative breast cancer (TNBC), PI3K inhibition would result in HR impairment and subsequent sensitization to PARP inhibitors. We show in TNBC cells that PI3K inhibition leads to DNA damage, downregulation of BRCA1/2, gain in poly-ADP-ribosylation, and subsequent sensitization to PARP inhibition. In TNBC patient–derived primary tumor xenografts, dual PI3K and PARP inhibition with BKM120 and olaparib reduced the growth of tumors displaying BRCA1/2 downregulation following PI3K inhibition. PI3K-mediated BRCA downregulation was accompanied by extracellular signal–regulated kinase (ERK) phosphorylation. Overexpression of an active form of MEK1 resulted in ERK activation and downregulation of BRCA1, whereas the MEK inhibitor AZD6244 increased BRCA1/2 expression and reversed the effects of MEK1. We subsequently identified that the ETS1 transcription factor was involved in the ERK-dependent BRCA1/2 downregulation and that knockdown of ETS1 led to increased BRCA1/2 expression, limiting the sensitivity to combined BKM120 and olaparib in 3-dimensional culture

    TBCRC009: A Multicenter Phase II Clinical Trial of Platinum Monotherapy With Biomarker Assessment in Metastatic Triple-Negative Breast Cancer

    Get PDF
    The identification of patients with metastatic triple-negative breast cancer (mTNBC) who are expected to benefit from platinum-based chemotherapy is of interest. We conducted a single-arm phase II clinical trial of single-agent platinum for mTNBC with biomarker correlates
    • 

    corecore