12 research outputs found

    Directed Electron Transfer in Flavin Peptides with Oligoproline‐Type Helical Conformation as Models for Flavin‐Functional Proteins

    Get PDF
    To mimic the charge separation in functional proteins we studied flavin‐modified peptides as models. They were synthesized as oligoprolines that typically form a polyproline type‐II helix, because this secondary structure supports the electron transfer properties. We placed the flavin as photoexcitable chromophore and electron acceptor at the N‐terminus. Tryptophans were placed as electron donors to direct the electron transfer over 0–3 intervening prolines. Spectroscopic studies revealed competitive photophysical pathways. The reference peptide without tryptophan shows dominant non‐specific ET dynamics, leading to an ion pair formation, whereas peptides with tryptophans have weak non‐specific ET and intensified directed electron transfer. By different excitation wavelengths, we can conclude that the corresponding ion pair state of flavin within the peptide environment has to be energetically located between the S1_{1} and S4_{4} states, whereas the directed electron transfer to tryptophan occurs directly from the S1_{1} state. These photochemical results have fundamental significance for proteins with flavin as redoxactive cofactor

    Early Draper-mediated glial refinement of neuropil architecture and synapse number in the Drosophila antennal lobe

    Get PDF
    Glial phagocytic activity refines connectivity, though molecular mechanisms regulating this exquisitely sensitive process are incompletely defined. We developed the Drosophila antennal lobe as a model for identifying molecular mechanisms underlying glial refinement of neural circuits in the absence of injury. Antennal lobe organization is stereotyped and characterized by individual glomeruli comprised of unique olfactory receptor neuronal (ORN) populations. The antennal lobe interacts extensively with two glial subtypes: ensheathing glia wrap individual glomeruli, while astrocytes ramify considerably within them. Phagocytic roles for glia in the uninjured antennal lobe are largely unknown. Thus, we tested whether Draper regulates ORN terminal arbor size, shape, or presynaptic content in two representative glomeruli: VC1 and VM7. We find that glial Draper limits the size of individual glomeruli and restrains their presynaptic content. Moreover, glial refinement is apparent in young adults, a period of rapid terminal arbor and synapse growth, indicating that synapse addition and elimination occur simultaneously. Draper has been shown to be expressed in ensheathing glia; unexpectedly, we find it expressed at high levels in late pupal antennal lobe astrocytes. Surprisingly, Draper plays differential roles in ensheathing glia and astrocytes in VC1 and VM7. In VC1, ensheathing glial Draper plays a more significant role in shaping glomerular size and presynaptic content; while in VM7, astrocytic Draper plays the larger role. Together, these data indicate that astrocytes and ensheathing glia employ Draper to refine circuitry in the antennal lobe before the terminal arbors reach their mature form and argue for local heterogeneity of neuron-glia interactions

    Lipids and pathogenic flaviviruses: An intimate union.

    No full text

    Flaviviruses modulate host lipids during infection.

    No full text
    <p>After flavivirus particles are internalized through receptor-mediated endocytosis, fusion with the membrane of the late endosome releases a single positive-sense RNA genome into the cytoplasm of the host cell. Translation by cellular ribosomes results in membrane-associated structural and nonstructural proteins, which curve ER lipid bilayers into invaginated replication vesicles and budding sites (inset). To facilitate membrane remodeling and replication, flaviviruses manipulate multiple aspects of both structural and bioactive lipid classes in an organelle-dependent manner. The resulting dysregulation of cellular pathways may contribute to cell death and clinical disease. Fully assembled virus particles are transported to the Golgi apparatus, where they undergo a maturation process and are released through exocytosis. Cer, ceramide; Chol, cholesterol; DAG, diacylglycerol; ER, endoplasmic reticulum; FFA, free fatty acids; GalCer, galactosylceramide; GlcCer, glucosylceramide; GSPL, complex glycosphingolipids; mTOR, mammalian target of rapamycin; NS, nonstructural; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PIP2, phosphatidylinositol-(4,5)-bisphosphate; PI, phosphatidylinositol; PIP3, phosphatidylinositol-(3,4,5)-trisphosphate; PM, plasma membrane; PS, phosphatidylserine; S1P, sphingosine-1-phosphate; SM, sphingomyelin; TAG, triacylglycerol; Ve, invaginated vesicles.</p

    A global lipid map defines a network essential for Zika virus replication

    Get PDF
    Zika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection. We find that ZIKV significantly alters host lipid composition, with the most striking changes seen within subclasses of sphingolipids. Ectopic expression of ZIKV NS4B protein results in similar changes, demonstrating a role for NS4B in modulating sphingolipid pathways. Disruption of sphingolipid biosynthesis in various cell types, including human neural progenitor cells, blocks ZIKV infection. Additionally, the sphingolipid ceramide redistributes to ZIKV replication sites, and increasing ceramide levels by multiple pathways sensitizes cells to ZIKV infection. Thus, we identify a sphingolipid metabolic network with a critical role in ZIKV replication and show that ceramide flux is a key mediator of ZIKV infection

    A global lipid map defines a network essential for Zika virus replication.

    No full text
    Zika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection. We find that ZIKV significantly alters host lipid composition, with the most striking changes seen within subclasses of sphingolipids. Ectopic expression of ZIKV NS4B protein results in similar changes, demonstrating a role for NS4B in modulating sphingolipid pathways. Disruption of sphingolipid biosynthesis in various cell types, including human neural progenitor cells, blocks ZIKV infection. Additionally, the sphingolipid ceramide redistributes to ZIKV replication sites, and increasing ceramide levels by multiple pathways sensitizes cells to ZIKV infection. Thus, we identify a sphingolipid metabolic network with a critical role in ZIKV replication and show that ceramide flux is a key mediator of ZIKV infection
    corecore