621 research outputs found

    Transdisciplinarity as a means for capacity development in water resources management

    Get PDF
    Water resources management has to deal with complex real life problems under uncertain framework conditions. One possibility for encountering such challenges is integrated water resources management (IWRM). However, IWRM is often understood as prescriptive manual, not acknowledging the need for adaptive solutions and capacity development (CD). These challenges demonstrate that sustainable water resources management requires transdisciplinarity, i.e. the integration of several scientific disciplines, as well as the collaboration between science and local actors. Transdisciplinarity is inherently related to CD since it facilitates collaboration and provides mutual learning and knowledge on complex interrelationships. This correlates with the evidence that CD can be seen as a key factor for water resources management (Alaerts et al. 1991, Alaerts 2009). Consequently, the objective of this thesis is to strengthen water resources management by connecting processes of IWRM and CD in a transdisciplinary sense, i.e. (i) interrelating disciplinary research within an interdisciplinary research team that collaborates with local actors, and (ii) conducting a political process for knowledge and capacity development. Based on general insights, an embedded case study in the Western Bug River Basin, Ukraine, was conducted to evaluate the concept. It is shown that CD is essential for shifting from IWRM theories towards implementation and accordingly advantages of harmonizing CD into the IWRM process are presented (Leidel et al. 2012). Next to capacity issues, also other coordination gaps were assessed. River Basin Organisations are frequently proposed as a response to the administrative gap; however, coordination efforts cannot be simply reduced by transferring tasks from jurisdictional institutions to a river basin authority, because they will always need to coordinate with organizations from within or outside the water sector (von Keitz and Kessler 2008). Thus, coordination mechanisms across the boundaries of relevant policy fields are essential. Therefore, a management framework is established linking technical development and capacity development that describes interrelations between environmental pressures and capacity and information gaps for different levels of water management (Leidel et al. 2014). The developed model-based and capacity-based IWRM framework combines model-based systems analysis and capacity analysis for developing management options that support water management actors. This is aligned with a political process for capacity development. It constitutes a boundary object for approaching cross-scale challenges that converges analyses, assessments and participation into one strategy. As concluded by Mollinga (2008), this can improve the performance of sustainable resources management by approaching transdisciplinarity. Within the model and capacity-based IWRM framework, the results of the integrated analysis are made explicit and transparent by introducing a matrix approach. Technical issues, institutional challenges, organizational and human resources development, and information needs are jointly assessed and interrelated by confronting pressures and coordination gaps on a subsystem basis. Accordingly, the concept supports a transparent decision making process by identifying knowledge and capacities required for the implementation of technical intervention options and vice versa. The method is applied in the International Water Research Alliance Saxony (IWAS) model region ‘Ukraine’. It could be shown that the approach delivers management options that are scientifically credible and also accepted by and relevant for the actors. The case study revealed that technical intervention measures for the urban and rural water management have to be jointly implemented with appropriate CD measures and an accompanying political process on (i) strengthening the institutional framework and interministerial collaboration, (ii) fitting RBM into the existing institutional framework, (iii) setting up prerequisites for realistic RBM (Monitoring, information management, legal enforcement), (iv) a revision of effluent standards and a differentiated levy system, (v) cost covering tariffs, (vi) association work. For the Western Bug River Basin (WBRB), the strengthening of the collaboration between actors on all levels has to be continued. For increasing the usability, the approach needs to be institutionalized and become more practice relevant, e.g. by extending it to a water knowledge management system. Developing a roadmap for establishing transboundary water management is a subsequent step. For strengthening future water management actors, IWRM curricula development at uni-versities in Ukraine was supported. And we developed the e-learning module IWRM-education that links interactively different aspects of water management to comprehend the complexity of IWRM (Leidel et al. 2013). The evaluation showed that participants under-stand the content, appreciate this way of learning, and will use this module for further activities. The case study showed that technical cooperation can be a facilitator for political processes and that it can support decision making in a transparent way. Yet, it also showed that IWRM is highly political process and that the developed approach cannot cover all obstacles. In summary, exploring and reducing simultaneously environmental pressures and capacity and information gaps is essential for water sector evolution worldwide. Accordingly, transdisciplinarity as a means for capacity development can support the implementation of real integrated water resources management

    An Exploratory Study of Health Care Providers’ Acceptance of Opt-Out HIV Testing in Western Australia

    Get PDF
    In this first study of opt-out HIV testing in Australia, a needs assessment and systematic review of research on opt-out HIV testing indicated a need for a change in testing strategy. Next, a qualitative study of health care providers found dichotomous beliefs about opt-out HIV testing. The final study found that opt-out HIV testing was acceptable, and few patients opted out. Findings from this thesis form an initial evidence base to inform practice, research and policy

    The epitranscriptome in translation regulation: mRNA and tRNA modifications as the two sides of the same coin?

    Get PDF
    Translation of mRNA is a highly regulated process that is tightly coordinated with cotranslational protein maturation. Recently, mRNA modifications and tRNA modifications - the so called epitranscriptome - have added a new layer of regulation that is still poorly understood. Both types of modifications can affect codon-anticodon interactions, thereby affecting mRNA translation and protein synthesis in similar ways. Here, we describe an updated view on how the different types of modifications can be mapped, how they affect translation, how they trigger phenotypes and discuss how the combined action of mRNA and tRNA modifications coordinate translation in health and disease

    Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity

    Get PDF
    SummaryProteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity

    Editorial: Microbial Regulation of Translation

    Get PDF
    Since the description of the operon model by Jacob and Monod during the late 1950s and early 1960s (Ullmann, 2010), the concept that the reading of genetic information must be a regulated process has been central to our understanding of biology. This is particularly true for microbes, which can adapt to an incredible variety of environments. Based on the research performed since the description of the operon, we have gained a deep understanding of the diverse strategies used by microbes to modulate the transcription of genetic information from DNA to RNA. In contrast, the mechanisms that regulate the translation of messenger RNAs into proteins has received less attention. The technical developments of the last decade now allow us to obtain detailed information on RNA folding (Rouskin et al., 2014; Aw et al., 2016) and modification (Linder et al., 2015; Lorenz et al., 2020) and the speed of translation (Subramaniam et al., 2013; Ingolia, 2014; Dai et al., 2016). This, in turn, allows us to scrutinize the functionality of translation components in vivo, providing unprecedented opportunities to study translation regulation. In this special issue of Frontiers in Genetics, \u27Microbial Regulation of Translation,\u27 we have assembled a series of articles that use diverse experimental approaches to study the regulation of translation in microbes

    Laser scattering calculations in pair producing plasmas

    No full text
    The goal of this bachelor thesis is to investigate the laser scattering in a pair producing plasma with consideration of the radiation reaction. This is done for different parameters of a0 and density as well as for different polarisations

    A novel acoustic cell processing platform for cell concentration and washing

    Get PDF
    Acoustofluidics involves the interaction of ultrasonic standing waves with particle suspension flows. The field has seen considerable growth in the last decade, particularly for diagnostic MEMS scale applications but also in biological applications. Typically, an ultrasonic standing wave is generated across a fluid flow by a piezo-electric transducer and an opposite acoustic reflector. The scattering of the ultrasound field by the suspended particle results in an acoustic radiation force acting on the suspended particle. The strength of the acoustic radiation force is a function of fluid and particle density and compressibility and particle size. The dynamics of the particle are then controlled by a number of forces, such as the fluid drag force, gravity/buoyancy force, acoustic radiation force, and inter-particle forces. FloDesign Sonics has developed a novel acoustic cell processing platform based on multi-dimensional standing waves. The platform has broad applications in biopharmaceutical, e.g., cell clarification, continuous manufacturing, and cell processing within cellular therapy applications, e.g., cell concentration and wash, cell culturing, and microcarrier/cell separation. In fed batch cell clarification, e.g., CHO cells for mAb production, the multi-dimensional standing wave is designed to trap the cells in the acoustic field. The three-dimensional acoustic radiation forces cause the trapped cells to form tightly packed cylindrical shaped clusters of cells, which continuously settle out due to enhanced gravitational separation. This technology is single use, continuous, and scalable. A small scale clarification product operating at 4 L/hr was launched in April of 2016. Scaling of the technology has been successfully shown with larger units operating at flow rates of 10 and 50 L/hr, providing cell clarification efficiencies of 90% across a wide range of feed stream cell densities up to 80 M cells/ml. The same platform technology has been modified to enable a single use (gamma irradiated) continuous cell concentration and wash application for manufacturing of cell based therapies. The device has been designed to be able to process several liters of a suspended cell culture, e.g., T-cells, at concentrations of 1 to 10 M cells/ml. The cell suspension flows through the device. The acoustic radiation force field is used to trap and hold the cells in the acoustic field. After concentrating the cells, one or multiple washing steps are accomplished by flowing the washing fluid through the device, using the acoustic field to trap the cells while displacing the original cell culture fluid. The holdup volume of the device is about 30 ml. Depending on cell concentration and initial volume of the cell suspension, measured cell recoveries of 90% have been achieved with concentration factors of 20 to 50 for Jurkat T-cell suspensions. Scaling strategies used previously for cell clarification will be used to scale up the current cell concentration device to accommodate large volumes

    Stabilisierung des Stoffwechsels bei MilchkĂŒhen im peripartalen Zeitraum

    Get PDF
    Einleitung: Bei MilchkĂŒhen hĂ€ufen sich Erkrankungen in der FrĂŒhlaktation. Sie gehören zu den wichtigsten Ursachen frĂŒhzeitiger Merzung und damit der aktuell unbefriedigenden Nutzungsdauer. Ziele der Untersuchungen: Ziel dieser Arbeit war es, den Stoffwechsel von MilchkĂŒhen in der kritischen Übergangszeit vom Trockenstehen zur Laktation (Transitphase) durch drei verschiedene prophylaktische Maßnahmen zu stabilisieren: mittels HuminsĂ€uren Belastungen aus dem Darm einschließlich Endotoxinen zu mindern, mit einem Ammoniumpropionat-Propylenglykol- Gemisch die Energieversorgung zu verbessern sowie mit Dexamethason-21-isonicotinat die Stoffwechselfunktion der Leber zu fördern sowie gleichzeitig EntzĂŒndungsprozesse infolge der Kalbung zu hemmen. Materialien und Methoden: Die Untersuchungen wurden in einem sĂ€chsischen Bestand an 312 KĂŒhen der Rasse „Holstein Friesian“ randomisiert innerhalb eines Jahres durchgefĂŒhrt. An jeweils 78 KĂŒhe wurden 300 ml Ammoniumpropionat-Propylenglykol-Gemisch(C3) tĂ€glich vom 14. Tag ante partum (a.p.) bis zum 14. Tag post partum (p.p.) oral verabreicht; ebenfalls oral wurden 100 g HuminsĂ€ure-FertigprĂ€parat (HS-FP) bzw. 50 g HuminsĂ€uren-Rohstoff (HS-RS) im selben Zeitraum appliziert, und Dexamethason-21-isonicotinat (DEXA21) wurde einmalig am 1. Tag p.p. intramuskulĂ€r in der Dosierung 0,02 mg/kg Körpermasse verabreicht. 78 unbehandelte KĂŒhe dienten als Kontrollgruppe. Die Auswirkungen dieser Maßnahmen auf Gesundheit, Leistung und Stoffwechsel wurden durch klinische Untersuchungen, durch Blutkontrollen am 14. Tag a.p., am 3. und 28. Tag p.p. (Leukozyten, freie FettsĂ€uren [FFS], Bilirubin, ß-0H-Butyrat[BHB], Glucose, Cholesterol, Creatinkinase [CK], Aspartat-Amino-Transferase [ASAT], Glutamat-Dehydrogenase [GLDH], gamma-Glutaryl-Transferase [GGT], Protein, Albumin, Mg, Fe, Ca, anorganisches Phosphat [Pi], Na, K) sowie durch die Erfassung von Gesundheitsstatus, Milchleistung und Fruchtbarkeit zu bestimmten Zeitpunkten geprĂŒft. Ergebnisse: Die verschiedenen prophylaktischen Maßnahmen hatten keinen signifikanten Einfluss auf Fruchtbarkeits- und Gesundheitsparameter. Bei den absoluten und fettkorrigierten Milchmengen konnten ebenfalls keine statistisch gesicherten Unterschiede zwischen den Versuchsgruppen und der Kontrollgruppe festgestellt werden. Der Milcheiweißgehalt von C3 28 d p.p. sowie der Milchfettgehalt von DEXA21 und C3 100 d p.p. waren signifikant erhöht. Die Ergebnisse der Blutuntersuchungen ergaben hauptsĂ€chlich am 3., aber auch am 28. Tag p.p. gesicherte Unterschiede bei wichtigen Stoffwechselparametern wie Glucose, Cholesterol, Bilirubin, Protein, Albumin, Ca, Fe und CK. Die einmalige Gabe von Dexamethason-21-isonicotinat am 1. Tag p.p. hatte den besten Einfluss auf den Leber- und Energiestoffwechsel. In dieser Gruppe waren am 3. Tag p.p. die Glucose-, Bilirubin-, Cholesterol-, Protein, Ca- und Fe-Konzentrationen sowohl gegenĂŒber der KG wie auch gegenĂŒber allen anderen Versuchsgruppen signifikant gĂŒnstiger. FĂŒr die Albumin- und Na-Konzentrationen sowie die CK-AktivitĂ€t traf das gegenĂŒber der Kontroll- sowie der C3-Gruppe zu. Der Einsatz der Wirkstoffe mit HS-RS, HS-FP sowie C3 fĂŒhrte ebenfalls zu positiven Effekten auf die Leistung und den Stoffwechsel gegenĂŒber der Kontrollgruppe, jedoch ließen sich diese nur in wenigen FĂ€llen statistisch sichern. Schlussfolgerungen: Die Applikation von Dexamethason-21-isonicotinat einen Tag p.p. stabilisiert signifikant den Stoffwechsel von KĂŒhen nach dem Partus. Gleichartige Effekte auf Milch- und Fruchtbarkeitsleitung sowie die MorbiditĂ€t konnten nicht gesichert nachgewiesen werden. FĂŒr HuminsĂ€ure-Rohstoff, HuminsĂ€ure-FertigprĂ€parat sowie Ammoniumpropionat-Propylenglykol-Gemisch waren solche Effekte tendenziell erkennbar, statistisch aber nicht zu sichern. Auch wenn besonders mit Dexamethason-21-isonicotinat der Stoffwechsel in Belastungssituationen kurzfristig stabilisiert werden kann, mĂŒssen generell Haltung und FĂŒtterung analysiert sowie MĂ€ngel beseitigt werden.:Inhaltsverzeichnis Inhaltsverzeichnis .I AbkĂŒrzungsverzeichnis IV 1 Einleitung .......................................................................................... 1 2 LiteraturĂŒbersicht ............................................................................. 3 2.1 Stoffwechsel der Milchkuh im geburtsnahen Zeitraum ....................... 3 2.2 Bovine Ketose .................................................................................... 5 2.3 Fettmobilisationssyndrom ................................................................... 7 2.4 Möglichkeiten der Stabilisierung des Stoffwechsels der Milchkuh im geburtsnahen Zeitraum ...................................................................... 9 2.4.1 Allgemeines zur Stoffwechselstabilisierung ........................................ 9 2.4.2 Energiereiche C3-Verbindungen ...................................................... 11 2.4.2.1 Propionat .......................................................................................... 12 2.4.2.2 Propylenglykol .................................................................................. 14 2.4.2.3 Ammoniumpropionat-Propylenglykol-Gemisch ................................ 15 2.4.3 HuminsĂ€uren .................................................................................... 16 2.4.3.1 Einsatz, Vorkommen, Aufbau ........................................................... 16 2.4.3.2 Effekte .............................................................................................. 16 2.4.3.3 Wirkungsweise im Organismus ........................................................ 17 2.4.3.4 Anwendungen in der VeterinĂ€rmedizin ............................................. 18 2.4.3.5 HuminsĂ€urenprĂ€parate ..................................................................... 20 2.4.4 Glukokortikoide................................................................................. 21 2.4.4.1 Aufbau .............................................................................................. 21 2.4.4.2 Wirkungsweise ................................................................................. 21 2.4.4.3 Effekte .............................................................................................. 22 2.4.4.4 Dexamethason-21-isonicotinat ......................................................... 25 3 Tiere, Material und Methoden ........................................................ 27 3.1 Untersuchte Tiere, Betrieb, FĂŒtterung .............................................. 27 3.2 Versuchsanordnung, Gruppeneinteilung .......................................... 28 3.3 Entnahme, Aufbereitung und Aufbewahrung der Blutproben ........... 30 3.4 Bestimmung der Blutparameter, Referenzbereiche ......................... 31 3.4.1 Bestimmung der Leistungs-, Gesundheits- und Fruchtbarkeitsparameter .................................................................. 33 3.5 Statistische PrĂŒfung der ermittelten Daten ....................................... 35 4 Ergebnisse ...................................................................................... 36 4.1 Methodische Aspekte ....................................................................... 36 4.1.1 Wertung der Untersuchungsergebnisse kranker und selektierter KĂŒhe ................................................................................................ 36 4.1.2 Akzeptanz der verabreichten Futterzusatzstoffe .............................. 37 4.2 Klinische Befunde ............................................................................. 38 4.3 Leistungsparameter .......................................................................... 41 4.3.1 Milchleistung .................................................................................... 41 4.3.2 Fruchtbarkeit .................................................................................... 44 4.4 Labordiagnostische Parameter......................................................... 45 4.4.1 Energie-Fett-Leberstoffwechsel ....................................................... 45 4.4.1.1 Glucose ............................................................................................ 45 4.4.1.2 Cholesterol ....................................................................................... 47 4.4.1.3 Bilirubin ............................................................................................ 48 4.4.1.4 Beta-Hydroxy-Butyrat ....................................................................... 49 4.4.1.5 Freie FettsĂ€uren ............................................................................... 50 4.4.1.6 Aspartat-Amino-Transferase ............................................................ 51 4.4.1.7 Gamma-Glutamyl-Transferase ......................................................... 52 4.4.1.8 Glutamat-Dehydrogenase ................................................................ 53 4.4.2 Eiweißstoffwechsel ........................................................................... 54 4.4.2.1 Gesamtprotein .................................................................................. 54 4.4.2.2 Albumin ............................................................................................ 55 4.4.3 Mineralstoff- und Spurenelementstoffwechsel .................................. 56 4.4.3.1 Natrium ............................................................................................. 56 4.4.3.2 Kalium .............................................................................................. 57 4.4.3.3 Calcium ............................................................................................ 58 4.4.3.4 anorganisches Phosphat .................................................................. 59 4.4.3.5 Magnesium ....................................................................................... 60 4.4.3.6 Eisen ................................................................................................ 61 4.4.4 Muskelstoffwechsel .......................................................................... 62 4.4.4.1 Kreatinkinase ................................................................................... 62 4.4.5 Leukozyten ....................................................................................... 63 5 Diskussion ...................................................................................... 64 5.1 Klinische Parameter ......................................................................... 64 5.1.1 MorbiditĂ€t ......................................................................................... 64 5.1.2 Milchleistung .................................................................................... 67 5.1.3 Fruchtbarkeit .................................................................................... 70 5.2 Klinisch-chemische Parameter, Stoffwechsel ................................... 71 5.2.1 Wirkung von HuminsĂ€uren auf den Stoffwechsel ............................. 71 5.2.2 Wirkung einer energiereichen C3-Verbindung auf den Stoffwechsel 71 5.2.3 Wirkung von Dexamethason-21-isonicotinat auf den Stoffwechsel .. 74 6 Zusammenfassung ......................................................................... 83 7 Summary ......................................................................................... 85 8 Literaturverzeichnis ....................................................................... 87Problem: In dairy cattle diseases are common in early lactation. They are among the main causes of early culling and the current unsatisfactory productive life. Objective: The aim of this work was to stabilize metabolism of dairy cows in the critical transition period from standing dry to lactation by three different prophylactic applications: using humic acids to minimize strain from the gut including endotoxins, using ammonium propionate mixed with propylene glycol to improve energy supply and dexamethasone-21-isonicotinate to promote metabolic function of the liver and at the same time to inhibit inflammatory processes following parturition. Experimental design: The studies were performed in a Saxon dairy farm on 312 cows of the „Holstein Friesian\" breed, randomly performed within one year. 78 cows were administered orally 300 ml ammonium propionate mixed with propylene glycol (C3) daily from 14 days before parturition (a.p.) to 14 days after parturition (p.p.), another 78 cows 100 g of a humic acid drug (HS-FP) or 50 g of humic acid raw material (HS-RS) were administered orally in the same period and dexamethasone-21-isonicotinate (DEXA21) was applied intramuscularly to another 78 cows on the first day p.p. in a dose of 0.02 mg/kg body weight. 78 untreated cows were used as control group. The impact of these administrations on health, performance and metabolism has been measured by clinical examinations and blood tests on 14. day a.p., on 3. and 28. day p.p. (Leukocytes, free fatty acids [ FFS ], bilirubin, beta-0H-butyrate [BHB] , glucose, cholesterol, creatine kinase [CK], aspartate aminotransferase [AST], glutamate dehydrogenase [GLDH], gamma glutaryl transferase [GGT], protein, albumin, Mg, Fe, Ca, inorganic phosphate [Pi] , Na, K) and was verified by detection of health status, milk yield and fertility. Results: The different prophylactic administrations had no significant effect on fertility and health parameters. The absolute and fat- corrected milk yields also showed no statistically reliable differences between experimental groups and control group. Milk protein content in C3 28 days p.p. and milk fat content in DEXA21 and C3 100 days p.p. were significantly increased. Blood control results showed mainly on 3. and 28. day p.p. important differences in metabolic parameters, such as glucose, cholesterol, bilirubin, protein, albumin, Ca, Fe and CK, which are statistically secured. A single dose of dexamethasone-21- isonicotinate on first day p.p. had the best effect on liver and energy metabolism. Three days p.p. glucose, bilirubin, cholesterol, protein, Ca and Fe concentrations performed significantly better in DEXA21 group compared both to control group and all other treatment groups. For albumin and Na concentrations and CK activity that was true with respect to control and C3 group. The use of a humic acid drug, humic acid raw material and ammonium propionate mixed with propylene glycol had positive impact on performance and metabolism compared with control group too, but could be statistically secured in only a few cases. Conclusions: The application of dexamethasone-21-isonicotinate at the first day p.p. significantly stabilizes metabolism in cows after parturition. Similar effects on milk yield and fertility as well as morbidity could not be observed. For humic acid drug, humic acid raw material and ammonium propionate mixed with propylene glycol such effects tended to be recognizable, but cannot be statistically secured. Metabolism can be stabilized in short term stress situations with dexamethasone-21-isonicotinate, general care and feeding must be analyzed and deficiencies have to be eliminated.:Inhaltsverzeichnis Inhaltsverzeichnis .I AbkĂŒrzungsverzeichnis IV 1 Einleitung .......................................................................................... 1 2 LiteraturĂŒbersicht ............................................................................. 3 2.1 Stoffwechsel der Milchkuh im geburtsnahen Zeitraum ....................... 3 2.2 Bovine Ketose .................................................................................... 5 2.3 Fettmobilisationssyndrom ................................................................... 7 2.4 Möglichkeiten der Stabilisierung des Stoffwechsels der Milchkuh im geburtsnahen Zeitraum ...................................................................... 9 2.4.1 Allgemeines zur Stoffwechselstabilisierung ........................................ 9 2.4.2 Energiereiche C3-Verbindungen ...................................................... 11 2.4.2.1 Propionat .......................................................................................... 12 2.4.2.2 Propylenglykol .................................................................................. 14 2.4.2.3 Ammoniumpropionat-Propylenglykol-Gemisch ................................ 15 2.4.3 HuminsĂ€uren .................................................................................... 16 2.4.3.1 Einsatz, Vorkommen, Aufbau ........................................................... 16 2.4.3.2 Effekte .............................................................................................. 16 2.4.3.3 Wirkungsweise im Organismus ........................................................ 17 2.4.3.4 Anwendungen in der VeterinĂ€rmedizin ............................................. 18 2.4.3.5 HuminsĂ€urenprĂ€parate ..................................................................... 20 2.4.4 Glukokortikoide................................................................................. 21 2.4.4.1 Aufbau .............................................................................................. 21 2.4.4.2 Wirkungsweise ................................................................................. 21 2.4.4.3 Effekte .............................................................................................. 22 2.4.4.4 Dexamethason-21-isonicotinat ......................................................... 25 3 Tiere, Material und Methoden ........................................................ 27 3.1 Untersuchte Tiere, Betrieb, FĂŒtterung .............................................. 27 3.2 Versuchsanordnung, Gruppeneinteilung .......................................... 28 3.3 Entnahme, Aufbereitung und Aufbewahrung der Blutproben ........... 30 3.4 Bestimmung der Blutparameter, Referenzbereiche ......................... 31 3.4.1 Bestimmung der Leistungs-, Gesundheits- und Fruchtbarkeitsparameter .................................................................. 33 3.5 Statistische PrĂŒfung der ermittelten Daten ....................................... 35 4 Ergebnisse ...................................................................................... 36 4.1 Methodische Aspekte ....................................................................... 36 4.1.1 Wertung der Untersuchungsergebnisse kranker und selektierter KĂŒhe ................................................................................................ 36 4.1.2 Akzeptanz der verabreichten Futterzusatzstoffe .............................. 37 4.2 Klinische Befunde ............................................................................. 38 4.3 Leistungsparameter .......................................................................... 41 4.3.1 Milchleistung .................................................................................... 41 4.3.2 Fruchtbarkeit .................................................................................... 44 4.4 Labordiagnostische Parameter......................................................... 45 4.4.1 Energie-Fett-Leberstoffwechsel ....................................................... 45 4.4.1.1 Glucose ............................................................................................ 45 4.4.1.2 Cholesterol ....................................................................................... 47 4.4.1.3 Bilirubin ............................................................................................ 48 4.4.1.4 Beta-Hydroxy-Butyrat ....................................................................... 49 4.4.1.5 Freie FettsĂ€uren ............................................................................... 50 4.4.1.6 Aspartat-Amino-Transferase ............................................................ 51 4.4.1.7 Gamma-Glutamyl-Transferase ......................................................... 52 4.4.1.8 Glutamat-Dehydrogenase ................................................................ 53 4.4.2 Eiweißstoffwechsel ........................................................................... 54 4.4.2.1 Gesamtprotein .................................................................................. 54 4.4.2.2 Albumin ............................................................................................ 55 4.4.3 Mineralstoff- und Spurenelementstoffwechsel .................................. 56 4.4.3.1 Natrium ............................................................................................. 56 4.4.3.2 Kalium .............................................................................................. 57 4.4.3.3 Calcium ............................................................................................ 58 4.4.3.4 anorganisches Phosphat .................................................................. 59 4.4.3.5 Magnesium ....................................................................................... 60 4.4.3.6 Eisen ................................................................................................ 61 4.4.4 Muskelstoffwechsel .......................................................................... 62 4.4.4.1 Kreatinkinase ................................................................................... 62 4.4.5 Leukozyten ....................................................................................... 63 5 Diskussion ...................................................................................... 64 5.1 Klinische Parameter ......................................................................... 64 5.1.1 MorbiditĂ€t ........................................

    Mid-term outcome comparing temporary K-wire fixation versus PDS augmentation of Rockwood grade III acromioclavicular joint separations

    Get PDF
    Backround The treatment of acute acromioclavicular (AC) joint injuries depends mainly on the type of the dislocation and patient demands. This study compares the mid term outcome of two frequently performed surgical concepts of Rockwood grade III AC joint separations: The temporary articular fixation with K-wires (TKW) and the refixation with an absorbable polydioxansulfate (PDS) sling. Findings Retrospective observational study of 86 patients with a mean age of 37 years underwent either TKW (n = 70) or PDS treatment (n = 16) of Rockwood grade III AC joint injuries. Mid term outcome with a mean follow up of 3 years was measured using a standardized functional patient questionnaire including Constant score, ASES rating scale, SPADI, XSMFA-D and a pain score. K-wire therapy resulted in significantly better functional results expressed by Constant score (88 ± 10 vs. 73 ± 18), ASES rating scale (29 ± 3 vs. 25 ± 5), SPADI (3 ± 9 vs. 9 ± 13), XSMFA-D function (13 ± 2 vs. 14 ± 3), XSMFA-D impairment (4 ± 1 vs. 6 ± 2) and pain score (1 ± 1 vs. 2 ± 2). Conclusion Either temporary K-wire fixation and PDS sling enable good or satisfying functional results in the treatment of Rockwood grade III AC separations. However functional outcome parameters indicate a significant advantage for the K-wire technique
    • 

    corecore