278 research outputs found

    Reply

    Get PDF

    Matrix Metalloproteinase-9 in Pneumococcal Meningitis: Activation via an Oxidative Pathway

    Get PDF
    In experimental bacterial meningitis, matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) contribute to brain damage. MMP-9 increases in cerebrospinal fluid (CSF) during bacterial meningitis and is associated with the brain damage that is a consequence of the disease. This study assesses the origin of MMP-9 in bacterial meningitis and how ROS modulate its activity. Rat brain-slice cultures and rat polymorphonuclear cells (PMNs) that had been challenged with capsule-deficient heat-inactivated Streptococcus pneumoniae R6 (hiR6) released MMP-9. Coincubation with either catalase, with the myeloperoxidase inhibitor azide, or with the hypochlorous acid scavenger methionine almost completely prevented activation, but not the release, of MMP-9, in supernatants of human PMNs stimulated with hiR6. Thus, in bacterial meningitis, both brain-resident cells and invading PMNs may act as sources of MMP-9, and stimulated PMNs may activate MMP-9 via an ROS-dependent pathway. MMP-9 activation by ROS may represent a target for therapeutic intervention in bacterial meningiti

    Caspofungin Cerebral Penetration and Therapeutic Efficacy in Experimental Cerebral Aspergillosis.

    Get PDF
    Despite best available therapy, cerebral aspergillosis is an often-lethal complication of disseminated aspergillosis. There is an urgent need to expand the currently limited therapeutic options. In this study, we assessed cerebral drug exposure and efficacy of caspofungin (CAS) using a lethal infant rat model of cerebral aspergillosis. Eleven-day-old Wistar rats were infected by intracisternal injection of Aspergillus fumigatus conidia. Treatment started after 22 h and was continued for 10 days. Regimens were CAS 1 mg/kg/day intraperitoneally (i.p.), liposomal amphotericin B (L-AmB) 5 mg/kg/day i.p., and both drugs combined at the same dose i.p. Infected controls were given NaCl 0.85% i.p. Primary endpoints assessed were survival, cerebral fungal burden, galactomannan index, and drug concentrations in brain homogenate at 2, 3, 5, and 11 days after infection. Compared to those of controls (4.4 ± 2.7 days), survival times were increased by treatment with CAS alone (10.3 ± 1.7 days; P < 0.0001) and CAS combined with L-AmB (9.3 ± 2.8 days; P < 0.0001). In contrast, survival time of L-AmB-treated animals (4.3 ± 3.1 days) was not different from that of controls. Cerebral fungal burden and galactomannan index declined in all animals over time, without significant differences between controls and treated animals. CAS trough levels in brain tissue were between 0.84 and 1.4 μg/g, concentrations we show to be associated with efficacy. AmB trough levels in brain tissue were higher than the MIC of the A. fumigatus isolate. In summary, CAS concentrations in brain tissue suggest it may be therapeutically relevant and it significantly improved survival in this lethal model of cerebral aspergillosis in nonneutropenic rats. The clinical efficacy of CAS treatment for cerebral aspergillosis merits further study. IMPORTANCE Treatment options for cerebral aspergillosis, an often-lethal disease, are limited. The echinocandins (caspofungin is one of them) are not recommended treatment because their brain tissue penetration is often considered insufficient. In a nursing rat model of cerebral aspergillosis that mimics human disease, we found potentially therapeutically relevant concentrations of caspofungin in brain tissue and prolonged survival of caspofungin-treated animals. The efficacy of caspofungin in the treatment of cerebral aspergillosis documented here, if confirmed in other animal models (especially immunosuppressed murine models) and by using additional Aspergillus isolates across a range of CAS minimal effective concentrations (MECs), would suggest that caspofungin merits further study as a treatment option for patients suffering from aspergillosis disseminated to the brain

    Predictive Value of Cerebrospinal Fluid (CSF) Lactate Level Versus CSF/Blood Glucose Ratio for the Diagnosis of Bacterial Meningitis Following Neurosurgery

    Get PDF
    The value of cerebrospinal fluid (CSF) lactate level and CSF/blood glucose ratio for the identification of bacterial meningitis following neurosurgery was assessed in a retrospective study. During a 3-year period, 73 patients fulfilled the inclusion criteria and could be grouped by preset criteria in one of three categories: proven bacterial meningitis (n = 12), presumed bacterial meningitis (n = 14), and nonbacterial meningeal syndrome (n = 47). Of 73 patients analyzed, 45% were treated with antibiotics and 33% with steroids at the time of first lumbar puncture. CSF lactate values (cutoff, 4 mmol/L), in comparison with CSF/blood glucose ratios (cutoff, 0.4), were associated with higher sensitivity (0.88 vs. 0.77), specificity (0.98 vs. 0.87), and positive (0.96 vs. 0.77) and negative (0.94 vs. 0.87) predictive values. In conclusion, determination of the CSF lactate value is a quick, sensitive, and specific test to identify patients with bacterial meningitis after neurosurger

    Predictive Value of Cerebrospinal Fluid (CSF) Lactate Level Versus CSF/Blood Glucose Ratio for the Diagnosis of Bacterial Meningitis Following Neurosurgery

    Get PDF
    The value of cerebrospinal fluid (CSF) lactate level and CSF/blood glucose ratio for the identification of bacterial meningitis following neurosurgery was assessed in a retrospective study. During a 3-year period, 73 patients fulfilled the inclusion criteria and could be grouped by preset criteria in one of three categories: proven bacterial meningitis (n = 12), presumed bacterial meningitis (n = 14), and nonbacterial meningeal syndrome (n = 47). Of 73 patients analyzed, 45% were treated with antibiotics and 33% with steroids at the time of first lumbar puncture. CSF lactate values (cutoff, 4 mmol/L), in comparison with CSF/blood glucose ratios (cutoff, 0.4), were associated with higher sensitivity (0.88 vs. 0.77), specificity (0.98 vs. 0.87), and positive (0.96 vs. 0.77) and negative (0.94 vs. 0.87) predictive values. In conclusion, determination of the CSF lactate value is a quick, sensitive, and specific test to identify patients with bacterial meningitis after neurosurger

    Strategies to prevent neuronal damage in paediatric bacterial meningitis

    Get PDF
    PURPOSE OF REVIEW: The mortality of bacterial meningitis can reach 30%, and up to 50% of survivors suffer from persisting neurological deficits as a consequence of the disease. The incidence of neurological sequelae of bacterial meningitis has not improved over the last decade. Adjunctive therapeutic options are limited, and ongoing research into the pathophysiology of brain damage in bacterial meningitis aims at providing the scientific basis for future development of more efficient adjunctive options. RECENT FINDINGS: In a population with good access to health care, dexamethasone given before or at the time of initiation of antibiotic therapy acts beneficially in paediatric pneumococcal meningitis, but not in meningococcal meningitis. In experimental animal models, brain-derived neurotrophic factor protected against brain injury and improved hearing while melatonin, which has antioxidant properties among other effects, reduced neuronal death. Transgene technology can be used to provide new insights into the pathophysiology of the disease and to identify potential therapeutic targets. SUMMARY: Although dexamethasone improves outcome of bacterial meningitis under defined circumstances, the morbidity of bacterial meningitis still remains unacceptably high. Experimental models may help to identify new therapeutic strategies to further improve the neurological outcome in young children suffering from bacterial meningitis

    Blockade of NMDA receptor subtype NR2B prevents seizures but not apoptosis of dentate gyrus neurons in bacterial meningitis in infant rats

    Get PDF
    BACKGROUND: Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (RO 25-6981). Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28) or 3.75 mg (150 mg/kg; n = 15) every 3 h or an equal volume of sterile saline (250 μl; n = 40) starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus. RESULTS: Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P < 0.05 for all RO 25-6981 treated animals combined). The extent of apoptosis was not affected by low or high doses of RO 25-6981. Number of apoptotic cells (median [range]) was 12.76 [3.16–25.3] in animals treated with low dose RO 25-6981 (control animals 13.8 [2.60–31.8]; (P = NS) and 9.8 [1.7–27.3] (controls: 10.5 [2.4–21.75]) in animals treated with high dose RO 25-6981 (P = NS). CONCLUSIONS: Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures

    Bacteremia causes hippocampal apoptosis in experimental pneumococcal meningitis

    Get PDF
    Bacteremia and systemic complications both play important roles in brain pathophysiological alterations and the outcome of pneumococcal meningitis. Their individual contributions to the development of brain damage, however, still remain to be defined

    Phage Lytic Enzyme Cpl-1 for Antibacterial Therapy in Experimental Pneumococcal Meningitis

    Get PDF
    Treatment of bacterial meningitis caused by Streptococcus pneumoniae is increasingly difficult, because of emerging resistance to antibiotics. Recombinant Cpl-1, a phage lysin specific for S. pneumoniae, was evaluated for antimicrobial therapy in experimental pneumococcal meningitis using infant Wistar rats. A single intracisternal injection (20 mg/kg) of Cpl-1 resulted in a rapid (within 30 min) decrease in pneumococci in cerebrospinal fluid (CSF) by 3 orders of magnitude lasting for 2 h. Intraperitoneal administration of Cpl-1 (200 mg/kg) led to an antibacterial effect in CSF of 2 orders of magnitude for 3 h. Cpl-1 may hold promise as an alternative treatment option in pneumococcal meningiti

    Embryonic Stem Cell-Derived Neurons Grown on Multi-Electrode Arrays as a Novel In vitro Bioassay for the Detection of Clostridium botulinum Neurotoxins

    Get PDF
    Clostridium botulinum neurotoxins (BoNTs) are the most poisonous naturally occurring protein toxins known to mankind and are the causative agents of the severe and potentially life-threatening disease botulism. They are also known for their application as cosmetics and as unique bio-pharmaceuticals to treat an increasing number of neurological and non-neurological disorders. Currently, the potency of biologically active BoNT for therapeutic use is mainly monitored by the murine LD50-assay, an ethically disputable test causing suffering and death of a considerable number of mice. The aim of this study was to establish an in-vitro assay as an alternative to the widely used in-vivo mouse bioassay. We report a novel BoNT detection assay using mouse embryonic stem cell-derived neurons (mESN) cultured on multi-electrode arrays. After 21 days in culture, the mESN formed a neuronal network showing spontaneous bursting activity based on functional synapses and express the necessary target proteins for BoNTs. Treating cultures for 6 h with 16.6 pM of BoNT serotype A and incubation with 1.66 pM BoNT/A or 33 Units/ml of Botox® for 24 h lead to a significant reduction of both spontaneous network bursts and average spike rate. This data suggests that mESN cultured on multi-electrode arrays pose a novel, biologically relevant model that can be used to detect and quantify functional BoNT effects, thus accelerating BoNT research while decreasing animal use
    • …
    corecore