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M A J O R A R T I C L E

Matrix Metalloproteinase–9 in Pneumococcal
Meningitis: Activation via an Oxidative Pathway

Damian N. Meli, Stephan Christen, and Stephen L. Leib
Institute for Infectious Diseases, University of Bern, Bern, Switzerland

In experimental bacterial meningitis, matrix metalloproteinases (MMPs) and reactive oxygen species (ROS)

contribute to brain damage. MMP-9 increases in cerebrospinal fluid (CSF) during bacterial meningitis and is

associated with the brain damage that is a consequence of the disease. This study assesses the origin of MMP-

9 in bacterial meningitis and how ROS modulate its activity. Rat brain-slice cultures and rat polymorphonuclear

cells (PMNs) that had been challenged with capsule-deficient heat-inactivated Streptococcus pneumoniae R6

(hiR6) released MMP-9. Coincubation with either catalase, with the myeloperoxidase inhibitor azide, or with

the hypochlorous acid scavenger methionine almost completely prevented activation, but not the release, of

MMP-9, in supernatants of human PMNs stimulated with hiR6. Thus, in bacterial meningitis, both brain-

resident cells and invading PMNs may act as sources of MMP-9, and stimulated PMNs may activate MMP-9

via an ROS-dependent pathway. MMP-9 activation by ROS may represent a target for therapeutic intervention

in bacterial meningitis.

In bacterial meningitis, matrix metalloproteinases

(MMPs) and reactive oxygen species (ROS), which are

both produced as part of the host’s immune response

to bacteria, contribute to the pathogenesis of brain

damage [1, 2]. MMPs are a family of zinc-dependent

matrix-degrading enzymes that can disrupt the blood-

brain barrier (BBB), a disruption that leads to extrav-

asation of blood proteins, to brain edema, to cerebral

hypoperfusion, and, ultimately, to neuronal damage [1,

3, 4]. ROS formation colocalizes with invading poly-

morphonuclear cells (PMNs) in the subarachnoid space
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and along penetrating cortical blood vessels and leads

to oxidative alterations of the cerebral vasculature [2,

5]. Blockage of MMPs by specific MMP-inhibitors and

neutralization of ROS by different antioxidants (such

as N-acetylcysteine, alpha phenyl-tert-butyl nitrone,

and desferoxamine) protect against brain damage in

experimental meningitis [1, 6].

Regulation of the biological effects of MMPs occurs

at the level of gene transcription, release, and enzyme

activity [7]. Studies performed in a rat model of pneu-

mococcal meningitis documented a 100–1000-fold tran-

scriptional induction of MMP-3, -8, -9, -12, -13, and

-14, in brain parenchymal tissue, but no change of MMP-

2 or MMP-7 was observed. In cerebrospinal fluid (CSF)

cells, mRNA of MMP-8 and MMP-9 was increased

10–100-fold, whereas MMP-2 and MMP-7 again re-

mained unchanged [1]. On the protein level, MMP-9

appeared in CSF as early as 15 min after infection, which

suggests release by brain-resident cells at this early stage

of disease. Concentrations of MMP-9 peaked ∼18 h after

infection, when neutrophilic meningeal inflammation is

prominent.

Furthermore, CSF concentrations of MMP-8 and

MMP-9 are elevated in children with bacterial men-
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Figure 1. Zymography of cerebrospinal fluid (CSF), polymorphonuclear cell (PMN) supernatants, and organotypic brain-slice–culture supernatants. In
CSF, matrix metalloproteinase (MMP)–2 was constitutively present, whereas proform MMP–9 (proMMP-9) and active MMP-9 were exclusively present in
meningitis, at 18 h after infection. A, Rat PMN supernatants. After 30 min, supernatants stimulated with heat-inactivated Streptococcus pneumoniae R6
(hiR6; white) showed a 2-fold increase in release of proMMP-9, compared with unchallenged control supernatants (gray) ( vs. ng/17.3 � 2.9 9.6 � 2.3
mL; ; ). Whereas MMP-2 was absent at any time, active MMP-9 was found 18 h after infection. B, Brain-slice–culture supernatants. Aftern p 6 P ! .001
18 h, supernatants stimulated with hiR6 showed a 2-fold increase in release of proMMP-9 ( vs. ng/mL; ), whereas MMP-25.1 � 1.4 2.5 � 0.7 P ! .01
remained unchanged. Per microgram of cell protein and per hour, PMNs released substantially more MMP-9 than did brain slices and therefore may act
as a major source of MMP-9 in the CSF during bacterial meningitis.

ingitis and are significantly higher in those who develop neu-

rological sequealae, compared with children who fully recover

from the disease [3]. However, the exact origin of MMP-9 and

the mechanism of MMP-9 activation in bacterial meningitis

remain unclear.

MMP-9 is released in an inactive proform (proMMP-9) and

must be processed to become biologically active [7]. The catalytic

zinc molecule in proMMP-9 is sterically blocked in the prodo-

main by a cysteine residue (i.e., cysteine switch), a process that

renders the enzyme inactive [8]. Activation of proMMP-9 occurs

when the prodomain is cleaved by other proteases or when the

cysteine switch is disrupted. Disruption can occur, at physiolog-

ical concentrations of ROS, as a result of oxidation of the cysteine

thiol group [8–10]. The results of the present study indicate that

both invading PMNs and brain-resident cells are likely sources

of MMP-9 in bacterial meningitis and that PMNs can activate

proMMP-9 by an ROS-dependent mechanism.

MATERIALS AND METHODS

Materials. Catalase and l-methionine were obtained from

Sigma; sodium azide was obtained from Merck; Percoll and

Dextran T-500 were obtained from Amersham Pharmacia Bio-

tech; and Neurobasal medium and B-27 supplement were ob-

tained from Life technologies.

Heat-inactivated Streptococcus pneumoniae R6 (hiR6).

The capsule-deficient S. pneumoniae strain R6 was grown over-

night at 37�C in brain-heart infusion. The bacteria were cen-

trifuged, were washed with sterile saline (0.9% NaCl), were

resuspended in 5 mL Hanks’ balanced salt solution (HBSS)

(136.8 mM NaCl, 5.4 mM KCl, 0.3 mM Na2HPO4, 0.4 mM

KH2PO4, 5 mM glucose [pH 7.4]), and were heat inactivated

for 20 min at 80�C.

PMNs. Human PMNs and rat PMNs were isolated from

peripheral blood by a combination of Dextran sedimentation

and Percoll centrifugation. PMNs suspended in HBSS were

stimulated with different concentrations of hiR6 at 37�C. After

30 min, culture supernatant was obtained by centrifugation and

was analyzed immediately.

Organotypic tissue cultures (OTCs). OTCs, which retain

the 3-dimensional architecture and local environment of brain

cells (including neurons, glial cells, and other cells) to a greater

extent than do dissociated cell cultures, are characterized by

preserved tissue morphology and by cell-type–specific distri-

bution. Brain-slice explants of the rat-brain cortex were pre-

pared as described elsewhere [11]. Brain slices were cultured

in neurobasal medium supplemented with B27, each slice in 1

insert, and were allowed to recover from explantation trauma

for 11 days before bacterial stimulation was initiated. Slices

were then overlaid with 107 cfu hiR6 in 100 mL Neurobasal

medium. The stimulated slices were further maintained for 18

h at 37�C before analysis. Control cultures (without bacteria)

were treated identically.

Animal model of pneumococcal meningitis. An infant-rat

model of pneumococcal meningitis was used, as described else-

where [1, 6]. In brief, 11-day-old Sprague-Dawley rats were
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Figure 2. Release of proform matrix metalloproteinase-9 (proMMP-9)
by human polymorphonuclear cells (PMNs). Exposure of human62 � 10
PMNs/mL (circles) to increasing concentrations (106–108 cfu/mL) of heat-
inactivated Streptococcus pneumoniae R6 (hiR6; white) resulted in dose-
dependent release ( ; ) of proMMP-9 into the su-2R p 0.93 P ! .0001
pernatant, as quantified by gelatin zymography, compared with unstimulated
control cultures (gray). Decreasing the number of PMNs ( /mL; tri-54 � 10
angles) resulted in a correspondingly smaller release of proMMP-9.

infected intracisternally with a defined inoculum of S. pneu-

moniae (serogroup 3). Eighteen hours later, 10–20 mL CSF was

obtained by a puncture of the cisterna magna. CSF was cen-

trifuged, and supernatant was used for further analysis.

Gelatin zymography. MMP-9 was quantified by gelatin zy-

mography [1]. In this assay system, active and latent forms of

MMP-9 show the same degree of gelatin digestion [12]. Ten

microliters rat PMN supernatant, or 3 mL CSF, or 10 mL OTC

supernatant was diluted with H2O and 4� sample buffer (0.25

M Tris [pH 6.8], 10% SDS, 40% glycerol, 0.05% bromophenol

blue), to a loading volume of 16 mL, and was electrophoresed in

a 10% SDS polyacrylamide gel containing 0.1% gelatin (Novex).

After electrophoresis for 2 h at 100 V, gels were incubated for 1

h in SDS-removing buffer (1% Triton X-100; 3 changes) and

then were incubated for 12 h at 37�C with incubation buffer (10

mM CaCl2, 50 mM Tris, 50 mM NaCl [pH 7.6]). The gels were

stained with Coomassie brilliant blue (0.5% Coomassie, 30%

methanol, 10% acetic acid). The gelatinolytic activity of MMP-

9 was quantified by densitometric analysis (public domain, Na-

tional Institutes of Health Image program) of the substrate lysis

zone around 92 kDa. Purified human neutrophil MMP-9 (Cal-

biochem) was used as a standard. Under these conditions, sam-

ples were within the linear range of the standard curve.

MMP-9 activity. MMP-9 activity and total MMP-9 of hu-

man PMN supernatants were assessed by an MMP-9 assay system

(Biotrak; Amersham Pharmacia Biotech). Samples were incu-

bated in microtiter wells that had been precoated with anti–

MMP-9 antibody, which binds both active and proMMP-9, and

activity was measured by substrate cleavage. To measure total

MMP-9 content, bound proMMP-9 was activated by amino-

phenylmercuric acetate before addition of the detection enzyme.

Statistical analysis. An analysis-of-variance test with Bon-

ferroni post hoc correction for multiple comparisons was per-

formed (Prism Software; GraphPad). was consideredP ! .05

significant. The results were expressed as .mean � SD

RESULTS

Origin of MMP-9 in bacterial meningitis. Zymography re-

vealed an increase of proMMP-9 (92 kDa) and of active MMP-

9 (83 kDa), in the CSF of rats that were suffering from pneu-

mococcal meningitis, 18 h after infection (figure 1, upper-left

panel). In contrast, levels of MMP-2 remained unchanged. In

vitro, peripheral rat PMNs released proMMP-9 �30 min after

challenge with hiR6 (figure 1, upper-middle panel, and 1A).

Similarly to the in vivo findings, active MMP-9 (83 kDa) was

found 18 h after challenge with hiR6. Since proMMP-9 is not

activated in the absence of cells, we conclude that proMMP-9

was released and subsequently was processed to its active form

by the PMNs. In brain-slice cultures, which lack invading

PMNs, proMMP-9 increased after hiR6 stimulation, a finding

that indicates that brain-resident cells may also act as sources

of MMP-9 in bacterial meningitis (figure 1, upper-right panel,

and 1B).

Human PMNs activate MMP-9 via an oxidative path-

way. Exposure of human PMNs/mL with different62 � 10

concentrations (106–108 cfu/mL) of hiR6 resulted in dose-de-

pendent release ( ; ) of proMMP-9 into the2R p 0.93 P ! .0001

supernatant, as measured by zymography (figure 2, left panel).

Decreasing the number of PMNs resulted in a correspondingly

smaller release of proMMP-9 (figure 2, right panel). For all

subsequent experiments, we used the highest concentrations of

hiR6 (108 cfu/mL) and PMN ( /mL) tested, levels that62 � 10

correspond to concentrations found in the CSF of animals that

are suffering from pneumococcal meningitis. In the culture

supernatants, human PMNs stimulated with hiR6 for 30 min

showed a 10-fold increase in release of total MMP-9 and a 2-

fold increase in release of active MMP-9, compared with un-

stimulated PMNs (figure 3A). Since ROS have been shown, in

different experimental paradigms, to activate MMPs [8–10], we

studied whether hiR6-triggered activation of MMP-9 is me-

diated by the hydrogen peroxide/myeloperoxidase system of

PMNs [13]. Addition of catalase (10 mg/mL), a H2O2-detoxi-

fying enzyme, significantly reduced active MMP-9 in PMN su-

pernatants (figure 3B). The primary granule enzyme myelo-

peroxidase (MPO) transforms H2O2 into the more powerful

oxidant hypochlorous acid (HOCl). Addition of azide (1 mM)

inhibited activation of MMP-9, a finding that suggests that
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Figure 3. Oxidative activation of matrix metallo proteinases (MMPs) in vitro. A, Supernatants of human polymorphonuclear cells (PMNs). In supernatants
of PMNs stimulated with heat-inactivated Streptococcus pneumoniae R6 (hiR6; white) for 30 min, a 10-fold increase in release of total MMP-9 (P !

) and a 2-fold increase in active MMP-9 ( ) was documented, compared with unstimulated control cultures (gray). B, Supernatants of hiR6-.0001 P ! .001
stimulated PMNs. In the supernatants, active MMP-9 was significantly reduced by addition of 10 mg catalase (Cat; )/mL, by addition of 1 mMP ! .001
azide (Azide; ), an MPO inhibitor, and by addition of 1mM methionine (Met; ), a scavenger of hypochlorous acid. Therefore, MMP-9 isP ! .001 P ! .001
activated via an oxidative pathway, with the involvement of hydrogen peroxide and myeloperoxidase. Data shown result from 2 typical experiments
( ).n p 4

MPO-catalyzed HOCl formation activates MMP-9 in our sys-

tem (figure 3B). This hypothesis is further corroborated by the

finding that addition of the HOCl scavenger methionine (1

mM) also inhibited activation of MMP-9 (figure 3B). Although

azide and methionine partially (∼30%) inhibited the release of

proMMP-9—and catalase even increased release by 30%—in-

hibition of proMMP-9 activation by these agents was much

greater and therefore cannot be explained by a limited avail-

ability of proMMP-9.

DISCUSSION

MMPs and ROS both have been shown to be involved in BBB

breakdown and in brain damage in bacterial meningitis [3, 4].

The present study was undertaken to identify the origin of

MMP-9 in bacterial meningitis and to answer the question of

whether ROS are involved in MMP activation. We have dem-

onstrated that brain-slice cultures stimulated with hiR6 release

proMMP-9, in the absence of invading immune cells. Brain-

resident macrophages, microglia, and endothelial cells have all

been shown to be sources of MMP-9 [14]. However, per mi-

crogram of cell protein and unit of time, PMNs released sub-

stantially more proMMP-9 than did brain slices and they may

therefore act as a major source of MMP-9 in CSF during bac-

terial meningitis. This conclusion is further supported by a

study of patients who were suffering from a variety of neu-

rological conditions (including bacterial meningitis), which

showed that the concentration of MMP-9 in CSF correlated

significantly with the CSF cell count [15].

Our in vitro studies demonstrate that hiR6-stimulated PMNs

activate MMP-9 via an ROS-dependent pathway that involves

hydrogen peroxide and myeloperoxidase. This finding is con-

sistent with other in vitro experiments using purified MMPs,

which showed that HOCl oxygenates the thiol residue of the

cysteine switch, thereby initiating autocleavage and activation

of the enzyme [8–10]. Further studies will evaluate whether the

inhibition of oxidative MMP-9 activation has the potential to

protect neurons from injury in bacterial meningitis.
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