2,719 research outputs found

    F100 multivariable control synthesis program: A review of full scale engine altitude tests

    Get PDF
    The benefits of linear quadratic regulator synthesis methods in designing a multivariable engine control capable of operating an engine throughout its flight envelope were demonstrated. The entire multivariable control synthesis program is reviewed with particular emphasis on engine tests conducted in the NASA Lewis propulsion systems laboratory altitude facility. The multivariable control has basically a proportional plus integral, model following structure with gains scheduled as functions of flight condition. The multivariable control logic design is described, along with control computer implementation aspects. Altitude tests demonstrated that the multivariable control logic could control an engine over a wide range of test conditions. Representative transient responses are presented to demonstrate engine behavior and the functioning of the control logic

    The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    Get PDF
    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed

    Coulomb blockade and Bloch oscillations in superconducting Ti nanowires

    Full text link
    Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2Ï€2\pi, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state -- the Coulomb blockade. When exposed to RF radiation, the internal Bloch oscillations can be synchronized with the external RF drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS -- the QPS junction (QPSJ).Comment: 5 pages, 4 figure

    A digital computer propulsion control facility: Description of capabilities and summary of experimental program results

    Get PDF
    Flight weight digital computers are being used today to carry out many of the propulsion system control functions previously delegated exclusively to hydromechanical controllers. An operational digital computer facility for propulsion control mode studies has been used successfully in several experimental programs. This paper describes the system and some of the results concerned with engine control, inlet control, and inlet engine integrated control. Analytical designs for the digital propulsion control modes include both classical and modern/optimal techniques

    Superconducting MoSi nanowires

    Full text link
    We have fabricated disordered superconducting nanowires of molybdenium silicide. A molybdenium nanowire is first deposited on top of silicon, and the alloy is formed by rapid thermal annealing. The method allows tuning of the crystal growth to optimise, e.g., the resistivity of the alloy for potential applications in quantum phase slip devices and superconducting nanowire single-photon detectors. The wires have effective diameters from 42 to 79 nm, enabling the observation of crossover from conventional superconductivity to regimes affected by thermal and quantum fluctuations. In the smallest diameter wire and at temperatures well below the superconducting critical temperature, we observe residual resistance and negative magnetoresistance, which can be considered as fingerprints of quantum phase slips

    The Spectral Energy Distribution of Self-gravitating Interstellar Clouds I. Spheres

    Full text link
    We derive the spectral energy distribution (SED) of dusty, isothermal, self gravitating, stable and spherical clouds externally heated by the ambient interstellar radiation field. For a given radiation field and dust properties, the radiative transfer problem is determined by the pressure of the surrounding medium and the cloud mass expressed as a fraction of the maximum stable cloud mass above which the clouds become gravitational unstable. To solve the radiative transfer problem a ray-tracing code is used to accurately derive the light distribution inside the cloud. This code considers both non isotropic scattering on dust grains and multiple scattering events. The dust properties inside the clouds are assumed to be the same as in the diffuse interstellar medium in our galaxy. We analyse the effect of the pressure, the critical mass fraction, and the ISRF on the SED and present brightness profiles in the visible, the IR/FIR and the submm/mm regime with the focus on the scattered emission and the thermal emission from PAH-molecules and dust grains.Comment: accepted for publication in ApJS, May 2008, v176n1 issu

    Spot activity of the RS CVn star {\sigma} Geminorum

    Full text link
    We model the photometry of RS CVn star σ\sigma Geminorum to obtain new information on the changes of the surface starspot distribution, i.e., activity cycles, differential rotation and active longitudes. We use the previously published Continuous Periods Search-method (CPS) to analyse V-band differential photometry obtained between the years 1987 and 2010 with the T3 0.4 m Automated Telescope at the Fairborn Observatory. The CPS-method divides data into short subsets and then models the light curves with Fourier-models of variable orders and provides estimates of the mean magnitude, amplitude, period and light curve minima. These light curve parameters are then analysed for signs of activity cycles, differential rotation and active longitudes. We confirm the presence of two previously found stable active longitudes, synchronised with the orbital period Porb=19.60P_{\rm{orb}}=19.60d and find eight events where the active longitudes are disrupted. The epochs of the primary light curve minima rotate with a shorter period Pmin,1=19.47P_{\rm{min,1}}=19.47d than the orbital motion. If the variations in the photometric rotation period were to be caused by differential rotation, this would give a differential rotation coefficient of α≥0.103\alpha \ge 0.103. The presence of two slightly different periods of active regions may indicate a superposition of two dynamo modes, one stationary in the orbital frame and the other one propagating in the azimuthal direction. Our estimate of the differential rotation is much higher than previous results. However, simulations show that this can be caused by insufficient sampling in our data.Comment: 10 pages, 6 figures. Submitted to A&
    • …
    corecore