629 research outputs found

    Molecular and Cellular Markers in Skeletal Muscle Damage after Acute Voluntary Exercise Containing Eccentric Muscle Contractions

    Get PDF
    In eccentric muscle contraction, the muscle is lengthening while contracting. For example, in downhill walking, the thigh muscles are contracting eccentrically. It is well known that unaccustomed eccentric exercise causes pain and may lead to inflammation reactions on muscles few days after the exercise. The theme of the present chapter is molecular and cellular markers in skeletal muscle damage after voluntary exercise containing eccentric muscle contractions. The chapter contains three topics: In the first topic, the damaging process followed by regeneration is demonstrated with antibody stainings of connective tissue, plasma membrane, and cytoskeletal proteins. The second topic is infiltration of inflammatory cells in damaged skeletal muscle. Neutrophils are usually the first inflammatory cells mostly present in the injured tissues; however, neutrophils are not present in exercise-induced skeletal muscle damage. Finally, the relationship between skeletal muscle damage and systematic markers, serum creatine kinase and voluntary maximal force production, is described

    Exercise-induced expression of angiogenic growth factors in skeletal muscle and in capillaries of healthy and diabetic mice

    Get PDF
    Background. Diabetes has negative, and exercise training positive, effects on the skeletal muscle vasculature, but the mechanisms are not yet fully understood. In the present experiment the effects of running exercise on the mRNA expression of pro- and antiangiogenic factors were studied in healthy and diabetic skeletal muscle. The responses in capillaries and muscle fibers, collected from the muscle with laser capture microdissection, were also studied separately. Methods. Healthy and streptozotocin-induced diabetic mice were divided into sedentary and exercise groups. Exercise was a single bout of 1 h running on a treadmill. Gastrocnemius muscles were harvested 3 h and 6 h post exercise, and angiogenesis-related gene expressions were analyzed with real-time PCR. In addition to muscle homogenates, capillaries and muscle fibers were collected from the muscle with laser capture microdissection method and analyzed for vascular endothelial growth factor-A (VEGF-A) and thrombospondin-1 (TSP-1) mRNA expression. Results. Of the proangiogenic factors, VEGF-A and VEGF receptor-2 (VEGFR-2) mRNA expression increased significantly (P < 0.05) in healthy skeletal muscle 6 h post exercise. VEGF-B also showed a similar trend (P = 0.08). No significant change was observed post exercise in diabetic muscles in the expression of VEGF-A, VEGFR-2 or VEGF-B. The expression of angiogenesis inhibitor TSP-1 and angiogenic extracellular matrix protein Cyr61 were significantly increased in diabetic muscles (P < 0.05–0.01). Capillary mRNA expression resembled that in the muscle homogenates, however, the responses were greater in capillaries compared to muscle homogenates and pure muscle fibers. Conclusion. The present study is the first to report the effects of a single bout of exercise on the expression of pro- and antiangiogenic factors in diabetic skeletal muscle, and it provides novel data about the separate responses in capillaries and muscle fibers to exercise and diabetes. Diabetic mice seem to have lower angiogenic responses to exercise compared to healthy mice, and they show markedly increased expression of angiogenesis inhibitor TSP-1. Furthermore, exercise-induced VEGF-A expression was shown to be greater in capillaries than in muscle fibers.peerReviewe

    Prebiotic Xylo-Oligosaccharides Ameliorate High-Fat-Diet-Induced Hepatic Steatosis in Rats

    Get PDF
    Understanding the importance of the gut microbiota (GM) in non-alcoholic fatty liver disease (NAFLD) has raised the hope for therapeutic microbes. We have shown that high hepatic fat content associated with low abundance of Faecalibacterium prausnitzii in humans and, further, the administration of F. prausnitzii prevented NAFLD in mice. Here, we aimed at targeting F. prausnitzii by prebiotic xylo-oligosaccharides (XOS) to treat NAFLD. First, the effect of XOS on F. prausnitzii growth was assessed in vitro. Then, XOS was supplemented or not with high (HFD, 60% of energy from fat) or low (LFD) fat diet for 12 weeks in Wistar rats (n = 10/group). XOS increased F. prausnitzii growth, having only a minor impact on the GM composition. When supplemented with HFD, XOS ameliorated hepatic steatosis. The underlying mechanisms involved enhanced hepatic β-oxidation and mitochondrial respiration. Nuclear magnetic resonance (1H-NMR) analysis of cecal metabolites showed that, compared to the HFD, the LFD group had a healthier cecal short-chain fatty acid profile and on the HFD, XOS reduced cecal isovalerate and tyrosine, metabolites previously linked to NAFLD. Cecal branched-chain fatty acids associated positively and butyrate negatively with hepatic triglycerides. In conclusion, XOS supplementation can ameliorate NAFLD by improving hepatic oxidative metabolism and affecting GM

    Prebiotic Xylo-Oligosaccharides Ameliorate High-Fat-Diet-Induced Hepatic Steatosis in Rats

    Get PDF
    Understanding the importance of the gut microbiota (GM) in non-alcoholic fatty liver disease (NAFLD) has raised the hope for therapeutic microbes. We have shown that high hepatic fat content associated with low abundance of Faecalibacterium prausnitzii in humans and, further, the administration of F. prausnitzii prevented NAFLD in mice. Here, we aimed at targeting F. prausnitzii by prebiotic xylo-oligosaccharides (XOS) to treat NAFLD. First, the effect of XOS on F. prausnitzii growth was assessed in vitro. Then, XOS was supplemented or not with high (HFD, 60% of energy from fat) or low (LFD) fat diet for 12 weeks in Wistar rats (n = 10/group). XOS increased F. prausnitzii growth, having only a minor impact on the GM composition. When supplemented with HFD, XOS ameliorated hepatic steatosis. The underlying mechanisms involved enhanced hepatic β-oxidation and mitochondrial respiration. Nuclear magnetic resonance (1H-NMR) analysis of cecal metabolites showed that, compared to the HFD, the LFD group had a healthier cecal short-chain fatty acid profile and on the HFD, XOS reduced cecal isovalerate and tyrosine, metabolites previously linked to NAFLD. Cecal branched-chain fatty acids associated positively and butyrate negatively with hepatic triglycerides. In conclusion, XOS supplementation can ameliorate NAFLD by improving hepatic oxidative metabolism and affecting GM

    Prebiotic Xylo-Oligosaccharides Ameliorate High-Fat-Diet-Induced Hepatic Steatosis in Rats

    Get PDF
    Understanding the importance of the gut microbiota (GM) in non-alcoholic fatty liver disease (NAFLD) has raised the hope for therapeutic microbes. We have shown that high hepatic fat content associated with low abundance of Faecalibacterium prausnitzii in humans and, further, the administration of F. prausnitziiprevented NAFLD in mice. Here, we aimed at targeting F. prausnitzii by prebiotic xylo-oligosaccharides (XOS) to treat NAFLD. First, the effect of XOS on F. prausnitzii growth was assessed in vitro. Then, XOS was supplemented or not with high (HFD, 60% of energy from fat) or low (LFD) fat diet for 12 weeks in Wistar rats (n = 10/group). XOS increased F. prausnitzii growth, having only a minor impact on the GM composition. When supplemented with HFD, XOS ameliorated hepatic steatosis. The underlying mechanisms involved enhanced hepatic β-oxidation and mitochondrial respiration. Nuclear magnetic resonance (1H-NMR) analysis of cecal metabolites showed that, compared to the HFD, the LFD group had a healthier cecal short-chain fatty acid profile and on the HFD, XOS reduced cecal isovalerate and tyrosine, metabolites previously linked to NAFLD. Cecal branched-chain fatty acids associated positively and butyrate negatively with hepatic triglycerides. In conclusion, XOS supplementation can ameliorate NAFLD by improving hepatic oxidative metabolism and affecting GM. </p

    Observation of B-0 ->psi(2S)K-S(0)pi(+)pi(-) and B-s(0)->psi(2S)K-S(0) decays

    Get PDF
    Using a data sample of root s = 13 TeV protonproton collisions collected by the CMS experiment at the LHC in 2017 and 2018 with an integrated luminosity of 103 fb(-1), the B-s(0) -> psi(2S)K-S(0) and B-0 -> psi(2S)K-S(0) pi(+) pi(-) decays are observed with significances exceeding 5 standard deviations. The resulting branching fraction ratios, measured for the first time, correspond to B(B-s(0) -> psi(2S)K-S(0))/B(B-0 Zeta -> psi(2S)K-S(0)) = (3.33 +/- 0.69(stat) +/- 0.11 (syst) +/- 0.34 (f(s)/f(d))) x 10(-2) and B(B-0 -> psi(2S)K-S(0) pi(+) pi(-))/B(B-0 -> psi(2S)K-S(0)) = 0.480 +/- 0.013 (stat) +/- 0.032 (syst), where the last uncertainty in the first ratio is related to the uncertainty in the ratio of production cross sections of B-s(0) and B-0 mesons, f(s)/f(d).Peer reviewe

    Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeV

    Get PDF
    The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb(-1), collected with the CMS detector at the CERN LHC, at root s = 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z' mediator produced as a resonance in proton-proton collisions. The mediator decay results in two "semivisible" jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z' boson has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5-4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time.Peer reviewe

    Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

    Get PDF
    Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width-related to its lifetime-is an important parameter. One way to determine this quantity is to measure its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here we report evidence for such off-shell contributions to the production cross-section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at the 95% confidence level. The scenario with no off-shell contribution is excluded at a p-value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as Gamma(H) = 3.2(-1.7)(+2.4) MeV, in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs.Peer reviewe
    • …
    corecore