20 research outputs found

    Reconstructing the environmental conditions around the Silurian Ireviken Event using the carbon isotope composition of bulk and palynomorph organic matter

    Get PDF
    The carbon isotope composition (δ13C) of bulk organic matter and two palynomorph groups (scolecodonts and chitinozoans) from the Llandovery-Wenlock strata of Gotland (E Sweden) are compared to gain knowledge about carbon cycling in the Silurian (sub)tropical shelf environment. The δ13C values of the palynomorphs are mostly lower than the δ13C values of the bulk organic matter, and the δ13C values of the benthic scolecodonts are lower than those of the planktonic chitinozoans. While the difference between bulk and palynomorph δ13C may be in part a function of trophic state, the lower values of the scolecodonts relative to those of chitinozoans, which are assumed to live in the well-mixed water column, might imply an infaunal mode of life for the polychaetes that carried the scolecodonts. Lower δ13C for the scolecodonts in the middle of the section may represent variations in primary marine productivity (supported by acritarch abundance data), oxidation of organic matter in the bottom waters, or genera effects. In general, however, trends between the three data sets are parallel, indicating similarities in the low frequency, environmentally forced controls. The δ13C data show a decreasing trend from the base of the section, up to a horizon well below the base of the Upper Visby Formation. At this level, and therefore probably several 10 kyr before the δ13C increase in the carbonates, the δ13C organic values increase by ~1‰. This perhaps is an expression of a changed composition of the bulk organic matter associated with the extinction events prior to the Llandovery-Wenlock boundary

    Additional file 1: Figure S1. of Calretinin as a blood-based biomarker for mesothelioma

    No full text
    Comparison of marker concentrations in different non-MM pathologies. All controls of group 1, 2, and 3 were pooled and then separated into plaques, asbestosis plus plaques, and asbestosis. P-values for each comparison between the three pathologies are indicated. (A) Concentrations of Calretinin [ng/mL] and (B) Mesothelin [nmol/L]. P-values for calretinin were obtained from two-sided Peto-Prentice test and for mesothelin from two-sided Wilcoxon rank-sum test. (TIFF 380 kb

    Additional file 2: Table S1. of Calretinin as a blood-based biomarker for mesothelioma

    No full text
    Dataset of the entire study population. The dataset lists histology (cases), pathologic changes (controls), age range, storage time of samples as well as measured concentrations of calretinin and mesothelin of individuals from all three study groups. (XLS 98 kb

    Calretinin as a blood-based biomarker for mesothelioma

    No full text
    Abstract Background Malignant mesothelioma (MM) is a deadly cancer mainly caused by previous exposure to asbestos. With a latency period up to 50 years the incidence of MM is still increasing, even in countries that banned asbestos. Secondary prevention has been established to provide persons at risk regular health examinations. An earlier detection with tumor markers might improve therapeutic options. Previously, we have developed a new blood-based assay for the protein marker calretinin. Aim of this study was the verification of the assay in an independent study population and comparison with the established marker mesothelin. Methods For a case-control study in men, a total of 163 cases of pleural MM and 163 controls were available from Australia, another 36 cases and 72 controls were recruited in Germany. All controls had asbestosis and/or plaques. Calretinin and mesothelin were determined by ELISA (enzyme-linked immunosorbent assay) in serum or plasma collected prior to therapy. We estimated the performance of both markers and tested factors potentially influencing marker concentrations like age, sample storage time, and MM subtype. Results Calretinin was able to detect all major subtypes except for sarcomatoid MM. Calretinin showed a similar performance in Australian and German men. At a pre-defined specificity of 95% the sensitivity of calretinin reached 71% and that of mesothelin 69%, when excluding sarcomatoid MM. At 97% specificity, the combination with calretinin increased the sensitivity of mesothelin from 66% to 75%. Sample storage time did not influence the results. In controls the concentrations of calretinin increased 1.87-fold (95% CI 1.10–3.20) per 10 years of age and slightly more for mesothelin (2.28, 95% CI 1.30–4.00). Conclusions Calretinin could be verified as a blood-based marker for MM. The assay is robust and shows a performance that is comparable to that of mesothelin. Retrospective analyses would not be limited by storage time. The high specificity supports a combination of calretinin with other markers. Calretinin is specific for epithelioid and biphasic MM but not the rarer sarcomatoid form. Molecular markers like calretinin and mesothelin are promising tools to improve and supplement the diagnosis of MM and warrant further validation in a prospective study

    Precision measurement of the mass difference between light nuclei and anti-nuclei

    No full text
    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons1,2. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories3, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment)4 detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei5,6. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T)
    corecore