3 research outputs found
Extremely Metal-Poor Stars. VII. The Most Metal-Poor Dwarf, CS 22876-032
We report high-resolution, high-signal-to-noise, observations of the
extremely metal-poor double-lined spectroscopic binary CS 22876-032. The system
has a long period : P = 424.7 0.6 days. It comprises two main sequence
stars having effective temperatures 6300 K and 5600 K, with a ratio of
secondary to primary mass of 0.89 0.04. The metallicity of the system is
[Fe/H] = -3.71 0.11 0.12 (random and systematic errors) -- somewhat
higher than previous estimates. We find [Mg/Fe] = 0.50, typical of values of
less extreme halo material. [Si/Fe], [Ca/Fe], and [Ti/Fe], however, all have
significantly lower values, ~ 0.0-0.1, suggesting that the heavier elements
might have been underproduced relative to Mg in the material from which this
object formed. In the context of the hypothesis that the abundance patterns of
extremely metal-poor stars are driven by individual enrichment events and the
models of Woosley and Weaver (1995), the data for CS 22876-032 are consistent
with its having been enriched by a zero-metallicity supernova of mass 30
M. As the most metal-poor near-main-sequence-turnoff star currently
known, the primary of the system has the potential to strongly constrain the
primordial lithium abundance. We find A(Li) (= log(N(Li)/N(H)) + 12.00) = 2.03
0.07, which is consistent with the finding of Ryan et al. (1999) that for
stars of extremely low metallicity A(Li) is a function of [Fe/H].Comment: 27 pages, 9 figures, accepted for publication in The Astrophysical
Journal, Sept. 1, 2000 issu
HD 51106 and HD 50747: an ellipsoidal binary and a triple system observed with CoRoT
We present an analysis of the observations of HD 51106 and HD 50747 by the
satellite CoRoT, obtained during its initial run, and of the spectroscopic
preparatory observations.
AIMS: We complete an analysis of the light curve, extract the main
frequencies observed, and discuss some preliminary interpretations about the
stars.
Methods: We used standard Fourier transform and pre-whitening methods to
extract information about the periodicities of the stars.
Results: HD 51106 is an ellipsoidal binary, the light curve of which can be
completely explained by the tidal deformation of the star and smaller secondary
effects. HD 50747 is a triple system containing a variable star, which exhibits
many modes of oscillation with periods in the range of a few hours. On the
basis of this period range and the analysis of the physical parameters of the
star, we conclude that HD 50747 is a Gamma-Doradus star.Comment: 7 pages, 8 figures, use (Astronomy-Astrophysics format/macro LAtex