7,562 research outputs found

    A new method for the spectroscopic identification of stellar non-radial pulsation modes. II. Mode identification of the Delta Scuti star FG Virginis

    Get PDF
    We present a mode identification based on new high-resolution time-series spectra of the non-radially pulsating Delta Scuti star FG~Vir (HD 106384, V = 6.57, A5V). From 2002 February to June a global Delta Scuti Network (DSN) campaign, utilizing high-resolution spectroscopy and simultaneous photometry has been conducted for FG~Vir in order to provide a theoretical pulsation model. In this campaign we have acquired 969 Echelle spectra covering 147 hours at six observatories. The mode identification was carried out by analyzing line profile variations by means of the Fourier parameter fit method, where the observational Fourier parameters across the line are fitted with theoretical values. This method is especially well suited for determining the azimuthal order m of non-radial pulsation modes and thus complementary with the method of Daszynska-Daszkiewicz (2002) which does best at identifying the degree l. 15 frequencies between 9.2 and 33.5 c/d were detected spectroscopically. We determined the azimuthal order m of 12 modes and constrained their harmonic degree l. Only modes of low degree (l <= 4) were detected, most of them having axisymmetric character mainly due to the relatively low projected rotational velocity of FG Vir. The detected non-axisymmetric modes have azimuthal orders between -2 and 1. We derived an inclination of 19 degrees, which implies an equatorial rotational rate of 66 km/s.Comment: 14 pages, 26 figure

    Criteria of efficiency for conformal prediction

    Get PDF
    We study optimal conformity measures for various criteria of efficiency of classification in an idealised setting. This leads to an important class of criteria of efficiency that we call probabilistic; it turns out that the most standard criteria of efficiency used in literature on conformal prediction are not probabilistic unless the problem of classification is binary. We consider both unconditional and label-conditional conformal prediction.Comment: 31 page

    Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler

    Get PDF
    Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory, Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: a comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion. It is shown that this combination of instruments can up-value the measurement values of each single instrument and may allow the simultaneous sensing of atmospheric targets and the motion of clear air

    Near-optimal asymmetric binary matrix partitions

    Full text link
    We study the asymmetric binary matrix partition problem that was recently introduced by Alon et al. (WINE 2013) to model the impact of asymmetric information on the revenue of the seller in take-it-or-leave-it sales. Instances of the problem consist of an n×mn \times m binary matrix AA and a probability distribution over its columns. A partition scheme B=(B1,...,Bn)B=(B_1,...,B_n) consists of a partition BiB_i for each row ii of AA. The partition BiB_i acts as a smoothing operator on row ii that distributes the expected value of each partition subset proportionally to all its entries. Given a scheme BB that induces a smooth matrix ABA^B, the partition value is the expected maximum column entry of ABA^B. The objective is to find a partition scheme such that the resulting partition value is maximized. We present a 9/109/10-approximation algorithm for the case where the probability distribution is uniform and a (1−1/e)(1-1/e)-approximation algorithm for non-uniform distributions, significantly improving results of Alon et al. Although our first algorithm is combinatorial (and very simple), the analysis is based on linear programming and duality arguments. In our second result we exploit a nice relation of the problem to submodular welfare maximization.Comment: 17 page

    One loop corrections to quantum hadrodynamics with vector mesons

    Get PDF
    The renormalized elastic ππ\pi\pi scattering amplitude to one loop is calculated in the chiral limit in the σ\sigma model and in a Quantum Hadrodynamic model (QHD-III) with vector mesons. It is argued that QHD-III reduces to the linear σ\sigma model in the limit that the vector meson masses become large. The pion decay constant is also calculated to 1-loop in the σ\sigma model, and at tree level in QHD-III; it is shown that the coefficient of the tree level term in the scattering amplitude equals Fπ−2F_\pi^{-2}. The 1-loop correction of FπF_\pi in QHD-III violates strong isospin current conservation. Thus,it is concluded that QHD-III can, at best, only describe the strongly interacting nuclear sector.Comment: 6 page

    The maintenance of elevated active chlorine levels in the Antarctic lower stratosphere through HCl null cycles

    Get PDF
    The Antarctic ozone hole arises from ozone destruction driven by elevated levels of ozone destroying ("active") chlorine in Antarctic spring. These elevated levels of active chlorine have to be formed first and then maintained throughout the period of ozone destruction. It is a matter of debate how this maintenance of active chlorine is brought about in Antarctic spring, when the rate of formation of HCl (considered to be the main chlorine deactivation mechanism in Antarctica) is extremely high. Here we show that in the heart of the ozone hole (16–18 km or 85–55 hPa, in the core of the vortex), high levels of active chlorine are maintained by effective chemical cycles (referred to as HCl null cycles hereafter). In these cycles, the formation of HCl is balanced by immediate reactivation, i.e. by immediate reformation of active chlorine. Under these conditions, polar stratospheric clouds sequester HNO3 and thereby cause NO2 concentrations to be low. These HCl null cycles allow active chlorine levels to be maintained in the Antarctic lower stratosphere and thus rapid ozone destruction to occur. For the observed almost complete activation of stratospheric chlorine in the lower stratosphere, the heterogeneous reaction HCl + HOCl is essential; the production of HOCl occurs via HO2 + ClO, with the HO2 resulting from CH2O photolysis. These results are important for assessing the impact of changes of the future stratospheric composition on the recovery of the ozone hole. Our simulations indicate that, in the lower stratosphere, future increased methane concentrations will not lead to enhanced chlorine deactivation (through the reaction CH4 + Cl  ⟶  HCl + CH3) and that extreme ozone destruction to levels below  ≈ 0.1 ppm will occur until mid-century

    Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis

    Get PDF
    1. Seasonal effects on daily activity patterns in the common vole were established by periodic trapping in the field and continuous year round recording of running wheel and freeding activity in cages exposed to natural meteorological conditions. 2. Trapping revealed decreased nocturnality in winter as compared to summer. This was paralelled by a winter reduction in both nocturnal wheel running and feeding time in cages. 3. Frequent trap checks revealed a 2 h rhythm in daytime catches in winter, not in summer. Cage feeding activity in daytime was always organized in c. 2 h intervals, but day-to-day variations in phase blurred the rhythm in summer in a summation of individual daily records. Thus both seasonal and short-term temporal patterns are consistent between field trappings and cage feeding records. 4. Variables associated with the seasonal change in daily pattern were: reproductive state (sexually active voles more nocturnal), age (juveniles more nocturnal), temperature (cold days: less nocturnal), food (indicated by feeding experiments), habitat structure (more nocturnal in habitat with underground tunnels). 5. Minor discrepancies between field trappings and cage feeding activity can be explained by assuming increased trappability of voles in winter. Cage wheel running is not predictive of field trapping patterns and is thought to reflect behavioral motivations not associated with feeding but with other activities (e.g., exploratory, escape, interactive behaviour) undetected by current methods, including radiotelemetry and passage-counting. 6. Winter decrease in nocturnality appears to involve a reduction in nocturnal non-feeding and feeding behaviour and is interpreted primarily as an adaptation to reduce energy expenditure in adverse but socially stable winter conditions.
    • …
    corecore