16,087 research outputs found

    Study of non-equilibrium effects and thermal properties of heavy ion collisions using a covariant approach

    Full text link
    Non-equilibrium effects are studied using a full Lorentz-invariant formalism. Our analysis shows that in reactions considered here, no global or local equilibrium is reached. The heavier masses are found to be equilibrated more than the lighter systems. The local temperature is extracted using hot Thomas Fermi formalism generalized for the case of two interpenetrating pieces of nuclear matter. The temperature is found to vary linearly with bombarding energy and impact parameter whereas it is nearly independent of the mass of the colliding nuclei. This indicates that the study of temperature with medium size nuclei is also reliable. The maximum temperatures obtained in our approach are in a nice agreement with earlier calculations of other approaches. A simple parametrization of maximal temperature as a function of the bombarding energy is also given.Comment: LaTex-file, 17 pages, 8 figures (available upon request), Journal of Physics G20 (1994) 181

    A superfluid hydrodynamic model for the enhanced moments of inertia of molecules in liquid 4He

    Full text link
    We present a superfluid hydrodynamic model for the increase in moment of inertia, ΔI\Delta I, of molecules rotating in liquid 4^4He. The static inhomogeneous He density around each molecule (calculated using the Orsay-Paris liquid 4^4He density functional) is assumed to adiabatically follow the rotation of the molecule. We find that the ΔI\Delta I values created by the viscousless and irrotational flow are in good agreement with the observed increases for several molecules [ OCS, (HCN)2_2, HCCCN, and HCCCH3_3 ]. For HCN and HCCH, our model substantially overestimates ΔI\Delta I. This is likely to result from a (partial) breakdown of the adiabatic following approximation.Comment: 4 pages, 1 eps figure, corrected version of published paper. Erratum has been submitted for change

    Heavy Ion Collisions and the Density Dependence of the Local Mean Field

    Get PDF
    We study the effect of the density dependence of the scalar and the vector part of the nucleonic self-energy in Relativistic Quantum Molecular Dynamics (RQMD) on observables like the transversal flow and the rapidity distribution. The stability of nuclei in RQMD is greatly improved if the density dependence is included in the self-energies compared to a calculation assuming always saturation density of nuclear matter. Different approaches are studied: The main results are calculated with self-energies extracted from a Dirac-Br\"uckner-Hartree-Fock G-matrix of a one boson exchange model, i.e. the Bonn potential. These results are compared with those obtained by a generalization of static Skyrme force, with calculations in the simple linear Walecka model and results of the Br\"uckner-Hartree-Fock G-matrix of the Reid soft core potential. The transversal flow is very sensitive to these different approaches. A comparison with the data is given.Comment: LaTex-file, 13 pages, 5 figures (available upon request), submitted to Nuclear Physics

    Live and Dead Nodes

    Get PDF
    In this paper, we explore the consequences of a distinction between `live' and `dead' network nodes; `live' nodes are able to acquire new links whereas `dead' nodes are static. We develop an analytically soluble growing network model incorporating this distinction and show that it can provide a quantitative description of the empirical network composed of citations and references (in- and out-links) between papers (nodes) in the SPIRES database of scientific papers in high energy physics. We also demonstrate that the death mechanism alone can result in power law degree distributions for the resulting network.Comment: 12 pages, 3 figures. To be published in Computational and Mathematical Organization Theor

    Algebras of Measurements: the logical structure of Quantum Mechanics

    Full text link
    In Quantum Physics, a measurement is represented by a projection on some closed subspace of a Hilbert space. We study algebras of operators that abstract from the algebra of projections on closed subspaces of a Hilbert space. The properties of such operators are justified on epistemological grounds. Commutation of measurements is a central topic of interest. Classical logical systems may be viewed as measurement algebras in which all measurements commute. Keywords: Quantum measurements, Measurement algebras, Quantum Logic. PACS: 02.10.-v.Comment: Submitted, 30 page

    Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage

    Get PDF
    The rad2 mutant of Schizosaccharomyces pombe is sensitive to UV irradiation and deficient in the repair of UV damage. In addition, it has a very high degree of chromosome loss and/or nondisjunction. We have cloned the rad2 gene and have shown it to be a member of the Saccharomyces cerevisiae RAD2/S. pombe rad13/human XPG family. Using degenerate PCR, we have cloned the human homolog of the rad2 gene. Human cDNA has 55% amino acid sequence identity to the rad2 gene and is able to complement the UV sensitivity of the rad2 null mutant. We have thus isolated a novel human gene which is likely to be involved both in controlling the fidelity of chromosome segregation and in the repair of UV-induced DNA damage. Its involvement in two fundamental processes for maintaining chromosomal integrity suggests that it is likely to be an important component of cancer avoidance mechanisms

    Exploring Patterns of Dynamic Size Changes of Lesions after Hepatic Microwave Ablation in an In Vivo Porcine Model

    Get PDF
    Microwave ablation (MWA) is a type of minimally invasive cancer therapy that uses heat to induce necrosis in solid tumours. Inter- and post-ablational size changes can influence the accuracy of control imaging, posing a risk of incomplete ablation. The present study aims to explore post-ablation 3D size dynamics in vivo using computed tomography (CT). Ten MWA datasets obtained in nine healthy pigs were used. Lesions were subdivided along the z-axis with an additional planar subdivision into eight subsections. The volume of the subsections was analysed over different time points, subsequently colour-coded and three-dimensionally visualized. A locally weighted polynomial regression model (LOESS) was applied to describe overall size changes, and Student's t-tests were used to assess statistical significance of size changes. The 3D analysis showed heterogeneous volume changes with multiple small changes at the lesion margins over all time points. The changes were pronounced at the upper and lower lesion edges and characterized by initially eccentric, opposite swelling, followed by shrinkage. In the middle parts of the lesion, we observed less dimensional variations over the different time points. LOESS revealed a hyperbolic pattern for the volumetric changes with an initially significant volume increase of 11.6% (111.6% of the original volume) over the first 32 minutes, followed by a continuous decrease to 96% of the original volume (p < 0.05)
    • …
    corecore